CIVIL-709 New Concretes for Structures

rsus s vil & Environmental Engineering				
vil & Environmental Engineering	Sem.	Туре	Language of	English
		Opt.	teaching	Linglish
			Credits	2
			Session	
			Exam	Oral
			Workload	60h
			Hours	28
			Courses	21
			Exercises	7
			Number of	
			positions	

Frequency

Every year

Remark

Next time: Fall 2020, Min. 6 persons, online course

Summary

This course provides an in depth coverage of mechanical and physical properties of Ultra High Performance Fibre Reinforced Concretes (UHPFRC), in the framework of new cementitious composites for structures. The structural applications and environmental assessment of construction systems with UHPFR

Content

Basic components, binders, admixtures and adjunctions.

- Rheology of fresh cementitious materials.
- Bases of Fibre Reinforced Concretes.
- Formulation of UHPFRC.
- Hydration, heat transport, moisture transport.
- Mechanics of strain hardening fibre reinforced concretes and combination with rebars.
- Time dependent behaviour of UHPFRC creep and shrinkage, response under restraint.
- Applications on new and existing structures case studies.
- Ways towards conceptual design of innovative structures with UHPFRC.

Keywords

Cementitious Composites, Fibres, UHPFRC, Strain hardening, Creep, Shrinkage, Formulation, Rheology. Modelling

Learning Prerequisites

Required courses

Recommended courses Basic course on Building Materials, Continuum Mechanics, Structural Mechanics, Physics and Chemistry

Resources

Websites

• http://mcs.epfl.ch

