

COM-621 Advanced Topics in Information Theory

Gastpar Michael				
Cursus	Sem.	Туре	Language of	English
Computer and Communication Sciences		Opt.	teaching	Linglish
			Credits	2
			Session	
			Exam	Project report
			Workload	60h
			Hours	28
			Courses	14
			Exercises	14
			Number of	
			positions	

Frequency

Only this year

Remark

Next time : Spring 2021

Summary

The class will focus on information-theoretic progress of the last decade. Topics include: Network Information Theory ; Information Measures: definitions, properties, and applications to probabilistic models.

Content

1) Information measures: Definitions, properties, applications, pitfalls.

- Mutual information
- Directed information
- Wyner's common information
- Entropy-power inequality
- Renyi- and f-divergences
- Extremization of information measures
- 2) Information measures in probabilistic systems
- Generalization guarantees for learning algorithms
- Compressed Sensing
- 3) Network Information Theory
- Classical channel settings: Multiple-Access, Broadcast, Relay
- Classical source settings: Slepian-Wolf, Lossy source coding, CEO problem
- "Gaussian location" model and problem
- Caching
- Application to federated learning?

Learning Prerequisites

Recommended courses COM-404 Information Theory and Coding

Learning Outcomes

By the end of the course, the student must be able to:

- Generalize information measures
- Formulate estimation, inference and decision problems via the lens of information measures

Manipulate information measures

Assessment methods

Students will work on projects.

Resources

Bibliography

Cover and Thomas, Elements of Information Theory (2nd ed), Wiley, 2006. El Gamal and Kim, Network Information Theory, Cambridge, 2011.

Ressources en bibliothèque

- Elements of Information Theory
- Network Information Theory