

PHYS-741 Gauge Theories and the Standard Model

Riembau Saperas Marc, Wulzer Andrea

Cursus	Sem.	Туре	Languago of	Englich
Physics		Opt.	teaching	Linglish
			Credits	4
			Session	
			Exam	Multiple
			Workload	120h
			Hours	56
			Courses	28
			Exercises	28
			Number of positions	

Frequency

Every year

Remark

Next time: Fall

Summary

The goal of this course is to explain the conceptual and mathematical bases of the Standard Model of fundamental interactions and to illustrate in detail its phenomenological consequences.

Content

- Non-abelian gauge theories
- Higgs mechanism and massive gauge theories
- Quarks and Leptons
- Basic electroweak phenomenology
- The flavour structure: quark masses and mixing
- Strong interactions
- Basic flavour phenomenology
- The Standard Model as an Effective Field Theory

Keywords

fundamental interactions, particle phenomenology gauge theories, Higgs mechanism,

Learning Prerequisites

Required courses Relativistic Quantum Fields I et II, Advanced Quantum Mechanics, Advanced Quantum Field Theory,

Recommended courses General Relativity, Cosmology

Expected student activities

Appreciate the conceptual foundations of the Standard Model as a theory of fundamental interactions and quantitavely understand its phenomenological success. Be able to concretely apply the Standard Model theory to the prediction of

Resources

Bibliography

- M. Peskin and Daniel Schroeder, An Introduction to Quantum Field Theory
- L.B. Okun, Leptons and Quarks
- T-P. Cheng and L-F. Li, Gauge Theory of Elementary Particle Physics

Références suggérées par la bibliothèque

• An introduction to Quantum Field Theory / Peskin, Schroeder