EPFL

PHYS-817 Supersymmetry Vecchi Luca Cursus Sem. Туре Language of English Opt. **Physics** teaching Credits 1 Session Exam Oral presentation Workload 30h Hours 18 Courses 18 Number of positions

Frequency

Only this year

Remark

Introductory course on Supersymmetry, the unique quantum extension of the symmetry principles of Relativity. Standard Model and non-perturbative phenomena in quantum field theory. Oct. 8th-Nov. 12th

Summary

Supersymmetry is the unique quantum extension of the symmetry principles of relativity. This course offers a first but broad introduction covering the role of Supersymmetry in our understanding of both physics beyond the Standard Model and non-perturbative phenomena in quantum field theory.

Content

Introduction

- -- Motivations (Coleman-Mandula, Unification with Gravity, Naturalness, non-perturbative QFT)
- -- Weyl spinors
- -- The Wess-Zumino model and SUSY transformations

N=1 Supersymmetry algebra

- -- Action of SUSY algebra on 1-particle states
- -- Action of SUSY algebra on fields (off-shell and on-shell formulations)
- -- Comments on extended Supersymmetry

Supersymmetric field theory

- -- Superspace
- -- General SUSY Lagrangians of chiral superfields
- -- SUSY Gauge symmetry, Super-Higgs Mechanism

Minimal Supersymmetric Standard Model (MSSM)

- -- motivations for low scale SUSY
- -- soft SUSY terms
- -- electro-weak symmetry breaking
- -- R-parity
- -- mu-term
- -- collider bounds and Higgs mass
- -- unification
- -- the flavor problem.

Introduction to non-perturbative aspects of N=1 Supersymmetry

- -- non-renormalization of superpotential in the Wess-Zumino model
- -- all-order beta function of Super Yang-Mills

-- Affleck-Dine-Seiberg superpotential

-- notions of Seiberg duality.

Note

https://moodle.epfl.ch/course/view.php?id=16400?

Keywords

Supersymmetry, Minimal Supersymmetric Standard Model, the Hierarchy Problem

Learning Prerequisites

Required courses Quantum Field Theory

Learning Outcomes

- build Supersymmetric particle physics models
- understand their phenomenological implications

Resources

Bibliography

"Introducing Supersymmetry" (Sohnius), "Supersymmetry and Supergravity" (Bagger-Wess), "A Supersymmetry Primer" (Martin), "Superspace, or One thousand and one lessons in supersymmetry" (Gates et al.), "Advanced Topics in Quantum Field Theory" (Shifman)

Ressources en bibliothèque

- Introducing supersymmetry (Sohnius)
- Supersymmetry and Supergravity (Bagger-Wess)
- A Supersymmetry Primer (Martin)
- Superspace, or One thousand and one lessons in supersymmetry (Gates et al.)
- Advanced Topics in Quantum Field Theory (Shifman)