
MATH-683 Fine-grained and parameterized complexity
Eisenbrand Friedrich, Polak Adam Teodor

Cursus Sem. Type
Mathematics Opt.

Language of
teaching

English

Credits 4
Session
Exam During the

semester
Workload 120h
Hours 84

Courses 28
Exercises 28
TP 28

Number of
positions

Frequency

Only this year

Remark

Spring semester - Tuesdays and Thursdays

Summary

The classical distinction between polynomial time solvable and NP-hard problems is often too coarse. This course covers
techniques for proving more fine-grained lower and upper bounds on complexity of computational problems.

Content

What makes a computational problem hard to solve efficiently? According to the classical paradigm, problems in P -##
with polynomial time algorithms -## are easy, while NP-complete problems are hard. In practice though this classification
is often too coarse. Indeed, even if a problem is NP-complete and a polynomial time algorithm should not be expected,
we might still look for the fastest possible exponential time algorithm, or an algorithm which runs fast when some
secondary parameter, other than the input size, is small. Besides, for problems in P, it happens that even a quadratic
time algorithm is too slow in practice, and we look for a faster one, preferably a linear time one. Without tight complexity
lower bounds we can never know if further speedups are possible or if the current algorithms are optimal. In this course
we explore a currently vivid research area -## fine-grained complexity -## which brings tools to prove such lower bounds.

We still have no clue how to prove unconditional lower bounds for running time in reasonably strong computational
models, e.g. in the word RAM model. Hence, in fine-grained complexity, we settle for conditional hardness results,
proved by reductions -## most often from well-studied problems, believed to be hard. Depending on the choice of the
starting problem, such reductions usually should not be considered impossibility proofs -## certainly, any of the assumed
hardness hypotheses may turn out false. However, fine-grained reductions let us pinpoint reasons why solving the target
problem faster is difficult, and on the other hand they give us a new perspective on how the source problem can be
solved. Besides, studying reductions often leads to better understanding of combinatorial structures involved in
computational problems.

In this course we will cover key hypotheses of fine-grained complexity, numerous reductions -## often between
seemingly distant problems -## and algorithmic techniques that enable surprising improvements. The course will be
research-oriented, and we will focus on open problems.

A tentative list of topics:

- Parameterized complexity of Vertex Cover, branching, kernelization
- Color coding technique, algorithms for Longest Path and Subset Sum
- Iterative compression technique, Feedback Vertex Set
- Treewidth: definition, dynamic programming, bidimensionality, lower bounds

2020-2021 COURSE BOOKLET

Fine-grained and parameterized complexity Page 1 / 2



- (Strong) Exponential Time Hypothesis and Sparsification Lemma
- Orthogonal Vectors, lower bounds for diameter approximation and edit distance
- All Pairs Shortest Paths and problems equivalent under subcubic reductions
- Unweighted APSP, Seidel's and Zwick's algorithms
- Boolean Matrix Multiplication and Approximate Pattern Matching
- 3SUM and Convolution 3SUM equivalence, Triangle Listing lower bounds
- Zero Triangle, reductions from 3SUM and APSP, hardness of Set Disjointness
- (min,+)-convolution, reductions to 3SUM and APSP, equivalence with Knapsack
- (min,max)-product and APSP approximation
- OMv-Hypothesis and lower bounds for dynamic problems

Keywords

Computational complexity, fine-grained reductions, FPT

Resources

Bibliography
Cygan et al., Parameterized Algorithms, Springer, 2015 (selected chapters); various research papers
suggested during the course; lecture notes

Ressources en bibliothèque

• Parameterized Algorithms, / Cygan

2020-2021 COURSE BOOKLET

Fine-grained and parameterized complexity Page 2 / 2


