CS-423 **Distributed information systems**

Aberer Karl			
Cursus	Sem.	Type	Language of teaching Credits Session Semester Exam Workload Weeks Hours Courses
Biocomputing minor	Н	Opt.	
Civil & Environmental Engineering		Opt.	
Communication systems minor	Н	Opt.	
Computer science	MA1, MA3	Opt.	
Cybersecurity	MA1, MA3	Opt.	
Data Science	MA1, MA3	Opt.	
Digital Humanities	MA1, MA3	Opt.	
Electrical and Electronical Engineering	MA1, MA3	Opt.	Exercise Number of
Energy Management and Sustainability	MA1, MA3	Opt.	positions
Environmental Sciences and Engineering	MA1, MA3	Opt.	
SC master EPFL	MA1, MA3	Obl.	

Language of teaching	English
Credits	4
Session	Winter
Semester	Fall
Exam	Written
Workload	120h
Weeks	14
Hours	3 weekly
Courses	2 weekly
Exercises	1 weekly
Number of	
positions	

Summary

This course introduces the key concepts and algorithms from the areas of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.

Content

Information Retrieval

- 1. Information Retrieval Introduction
- 2. Text-Based Information Retrieval
- 3. Vector Space Retrieval
- 4. Inverted Files
- 5. Distributed Retrieval
- 6. Probabilistic Information Retrieval
- 7. Query Expansion
- 8. Latent Semantic Indexing
- 9. Word Embeddings
- 10. Link-Based Ranking

Data Mining

- 1. Data Mining Introduction
- 2. Association Rule Mining
- 3. Clustering
- 4. Classification
- 5. Classification Methodology
- 6. Document Classification
- 7. Recommender Systems
- 8. Mining Social Graphs

Knowledge Bases

- 1. Semi-structured data
- 2. Semantic Web
- 3. RDF Resource Description Framework
- 4. Semantic Web Resources
- 5. Keyphrase extraction
- 6. Named entity recognition
- 7. Information extraction
- 8. Taxonomy Induction
- 9. Entity Disambiguation
- 10. Label Propagation
- 11. Link Prediction

12. Data Integration

Learning Prerequisites

Recommended courses

Introduction to Database Systems

Learning Outcomes

By the end of the course, the student must be able to:

- Characterize the main tasks performed by information systems, namely data, information and knowledge management
- · Apply collaborative information management models, like crowd-sourcing, recommender systems, social networks
- Apply knowledge models, their representation through Web standards and algorithms for storing and processing semi-structured data
- · Apply fundamental models and techniques of text retrieval and their use in Web search engines
- Apply main categories of data mining techniques, local rules, predictive and descriptive models, and master representative algorithms for each of the categories

Teaching methods

Ex cathedra + programming exercises (Python)

Assessment methods

25% Continuous evaluations with bonus system during the semester 75% Final written exam (180 min) during exam session