

ME-445	Aerodynamics				
	Mulleners Karen				
Cursus		Sem.	Туре	Language of	English
Mechanical engineering		MA1, MA3	Opt.	teaching	Linglish
Space technologie	s minor	Н	Opt.	Credits	4
				Session Semester Exam Workload Weeks Hours Courses Exercises Number of positions	Winter Fall Written 120h 14 4 weekly 2 weekly 2 weekly

Summary

This course will provide the fluid dynamic background to understand how air flows around two- and three-dimensional wings and bodies and to understand the aerodynamics forces and moments acting on the objects as a result of the air flow.

Content

- INTRODUCTION:
- Basic concepts
- Definitions
- Fundamental equations
- STEADY INVISCID INCOMPRESSIBLE FLOWS
- Potential flow
- Infinite wing theory
- Finite wing theory
- Wing design
- UNSTEADY AERODYNAMICS
- VISCOUS INCOMPRESSIBLE FLOWS
- Drag
- Boundary layes and flow separation
- Flow control

Keywords

airfoil, lift, drag, unsteady aerodynamics, flow separation, flow control

Learning Prerequisites

Recommended courses

- Incompressible fluid mechanics
- Fluid flow
- Hydrodynamics

Learning Outcomes

By the end of the course, the student must be able to:

- Describe the physical behaviour of a flow in scientific terms, AH1
- Link flow behaviour with non-dimensional parameters (e.g. Reynolds and Mach numbers), AH2
- Describe the physical differences between laminar and turbulent flows, AH4
- Describe in detail the physical phenomena associated with the interaction of a flow with a solid wall (as a function of its characteristics, e.g. roughness), AH5
- Describe flow in simple geometries, such as over a flat plate, in a tube, or around a sphere or airfoil, AH9
- Work out / Determine the flight characteristics from a wing shape and chose a wing shape to provide the desired flight characteristics, AH10
- Describe 3D effects resulting, for example, from a finite wing span or behind a blunt body, AH11
- Solve analytically or numerically the potential flow around an airfoil, AH19

Teaching methods

Online prerecorded lectures Exercise sessions

Assessment methods

Written examination (70%) Aifoil design mini-projects during the semester (30%)

Supervision

Office hours	Yes
Assistants	Yes

Resources

Bibliography

- Fundamentals of Aerodynamics. John D Anderson. McGraw-Hill, 1985.
- Aerodynamics for Engineering Students. E L Houghton, P W Carpenter, Steven H Collicott, and Daniel T Valentine. Elsevier, sixth edition, 2013.

Ressources en bibliothèque

- Aerodynamics for engineering students / Houghton
- Fundamentals of Aerodynamics / Anderson

Moodle Link

https://moodle.epfl.ch/course/view.php?id=14366