

Stolichnov Igor				
Cursus	Sem.	Туре	Language of	English
Cursus Materials Science and Engineering	Sem. BA6	Type Obl.	Language of teaching Credits Session Semester Exam Workload Weeks Hours	English 3 Summer Spring Written 90h 14 3 weekly
			Courses Exercises Number of positions	2 weekly 1 weekly

Summary

Macroscopic properties of solids are analysed using symmetry arguments, tensors, thermodynamics, and simple phenomenological models.

Content

1. The tools and formalism of phenomenological descriptions: symmetry, tensors, and thermodynamics

2. Description of practically important macroscopic properties (in the equilibrium state): dielectric response, elasticity, piezoelectricity, pyroelectricity, thermal dilatation and others

3. Description of dynamic equilibrium properties and transport properties: dielectric relaxation, electrical conductivity, heart conductivity, and thermoelectric phenomena

4. Use of simple phenomenological models for analysis of properties (such as Landau theory of structural phase transitions)

5. Application-relevant problems that require analysis of anysotropic properties of solids

Keywords

symmetry, tensors, anysotropy, thermodynamics

Learning Prerequisites

Required courses

No obligatory courses: the introduction covering mathematics and physics used in the course will be provided

Strongly recommended: basics of crystallography; general physics: thermodynamics, electrostatics; basics of linear algebra

Recommended courses

Learning Outcomes

By the end of the course, the student must be able to:

• Apply the symmetry arguments, tensors and thermodynamics for a description of the physical properties of materials.

Teaching methods

Assessment methods

Midterm test + exam during the exam session

Resources

Ressources en bibliothèque

- Physical properties of crystals / Nye
- Introduction to solid state physics / Kittel