COM-302 Principles of digital communications

Telatar Emre		
Cursus	Sem.	Type
Communication systems minor	Е	Opt.
Communication systems	BA6	Obl.
Computer science	BA6	Opt.
HES -SC	Е	Obl.

Credits 6 Session Summer Semester Spring	Language of teaching	English
Semester Spring	Credits	6
	Session	Summer
	Semester	Spring
Exam Written	Exam	Written
Workload 180h	Workload	180h
Weeks 14	Weeks	14
Hours 6 weekly	Hours	6 weekly
Courses 4 weekly	Courses	4 weekly
Exercises 2 weekly	Exercises	2 weekly
Number of	Number of	
positions	positions	

Summary

This course is on the foundations of digital communication. The focus is on the transmission problem (rather than being on source coding).

Content

Optimal receiver for vector channels
Optimal receiver for waveform (AWGN) channels
Various signaling schemes and their performance
Efficient signaling via finite-state machines
Efficient decoding via Viterbi algorithm
Communicating over bandlimited AWGN channels
Nyquist Criterion
Communicating over passband AWGN channels

Keywords

Detection, estimation, hypothesis testing, Nyquist, bandwidth, error probability, coding, decoding, baseband, passband, AM, QAM, PSK.

Learning Prerequisites

Required courses

Signal processing for communications and Modèles stochastiques pour les communications

Important concepts to start the course

Linear algebra, probability.

Learning Outcomes

By the end of the course, the student must be able to:

- Estimate the error probability of a communication link
- Design a "physical layer" communication link
- Implement a prototype of a "physical layer" transmitter/receiver via Matlab

Teaching methods

Ex cathedra + exercises + project. Lots of reading at home and exercises in class.

Assessment methods

With continuous control

Resources

Websites

• http://moodle.epfl.ch

Prerequisite for

Advanced Digital Communications Software-Defined Radio: A Hands-On Course