CS-451 Distributed algorithms

Guerraoui Rachid

Cursus	Sem.	Туре		
Computer and Communication Sciences		Opt.	Language of teaching	Engl
Computer science minor	Н	Opt.	Credits	6
Computer science	MA1, MA3	Obl.	Session Semester	Winter Fall Written
Cybersecurity	MA1, MA3	Obl.	Exam	
Data Science	MA1, MA3	Opt.	Workload Weeks	180h 14
SC master EPFL	MA1, MA3	Obl.	Hours	6 wee
			Courses	3 wee
			Exercises	2 weel
			TP	1 weel

Summary

Computing is often distributed over several machines, in a local IP-like network, a cloud or in a P2P network. Failures are common and computations need to proceed despite partial failures of machines or communication links. The foundations of reliable distributed computing will be studied.

Content

Reliable broadcast Causal Broadcast Total Order Broadcast Consensus Non-Blocking Atomic Commit Group Membership, View Synchrony Terminating Reliable Broadcast Shared Memory in Message Passing Systems Byzantine Fault Tolerance Self Stabilization Population protocols (models of mobile networks) Bitcoin, Blockchain Distributed Machine Learning Gossip

Keywords

Distributed algorithms, checkpointing, replication, consensus, atomic broadcast, ditributed transactions, atomic commitment, 2PC, Machine Learning

Learning Prerequisites

Required courses Basics of Algorithms, networking and operating systems

Recommended courses

The lecture is orthogonal to the one on concurrent algorithms: it makes a lot of sense to take them in parallel.

Learning Outcomes

By the end of the course, the student must be able to:

Number of positions

- Choose an appropriate abstraction to model a distributed computing problem
- Specify the abstraction
- Present and implement it
- Analyze its complexity
- Prove a distributed algorithm
- Implement a distributed system

Teaching methods

Ex cathedera Lectures, exercises and practical work

Assessment methods

Midterm and final exams Project

Supervision

Office hours	Yes
Assistants	Yes
Forum	Yes

Resources

Ressources en bibliothèque

• Introduction to reliable and secure distributed programming / Cachin

Notes/Handbook

Reliable and Secure Distributed Programming Springer Verlag C. Cachin, R. Guerraoui, L. Rodrigues

Websites

http://lpdwww.epfl.ch/education