EE-429 Fundamentals of VLSI design

Burg Andreas Peter

Cursus	Sem.	Туре	Language of	English
Cyber security minor	Н	Opt.	teaching	Englion
Cybersecurity	MA1, MA3	Opt.	Credits Session Semester	4 Winter
Electrical and Electronical Engineering	MA1, MA3	Opt.		Fall
MNIS	MA3	Obl.	Exam	During the
			Workload Weeks	120h

Hours

Courses

Exercises Number of positions

Summary

The course introduces the fundamentals of digital integrated circuits and the technology aspects from a designers perspective. It focuses mostly on transistor level, but discusses also the extension to large digital semicustom designs.

Content

Introduction:

History/milestones, methodology, technology, design objectives & principles **Digital CMOS Fundamentals (Inverter):** DC characteristics, delay, rise/fall time, noise-margins, impact of sizing **Basic CMOS logic gates:** Constructing basic logic gates, transistor sizing, gate delay considerations **Custom digital logic:** Logical effort model, sizing of gates, inverter chains Parasitic effects: Routing capacitance, wire resistance, Elmore delay model Technology considerations: Technology scaling, impact on parasitics, variability Low-power design: Power consumption basics (leakage, dynamic), voltage-scaling, basic low-power design principles Memories: Embedded SRAM (6T bit-cell, organization, peripherals), SRAM stability (noise margins) DRAM (briefly) Fundamentals of Semicustom design: Design flow, design abstraction, IP components, standard-cells (layout, characterization, lib, lef) Semicustom design flow: Logic synthesis, place & route, clock distribution, verification

Learning Prerequisites

Required courses

EE-490(b) Lab in EDA based design (can be attended in parallel in same semester)

Recommended courses

EE-334 Digital system design (can be attended in parallel in same semester)

Learning Outcomes

By the end of the course, the student must be able to:

4 weekly 3 weekly

1 weekly

- Construct digital logic gates
- Analyze the performance of digital gates
- Optimize digital logic
- Explain the operation of embedded memories
- Anticipate the impact of parasitics and technology scaling
- Implement a semicustom integrated circuit from a given RTL code to layout
- Link simplified abstract models to detailed computer simulations

Teaching methods

Ex-cathedra lectures with computer labs using industry-standard IC design tools

Resources Notes/Handbook Slides & course notes

Prerequisite for EE-431 Advanced VLSI design (highly recommended)