

Optical communications

Gaumier Christian		
Cursus	Sem.	Type
Electrical and Electronical Engineering	MA1, MA3	Opt.
MNIS	MA3	Opt.
Microtechnics	MA1, MA3	Opt.
Photonics minor	Н	Opt.

Language of teaching	English
Credits	3
Session	Winter
Semester	Fall
Exam	Oral
Workload	90h
Weeks	14
Hours	3 weekly
Courses	2 weekly
Project	1 weekly
Number of positions	

Summary

Situate and evaluate the potentialities, limits and perspectives of optical communication systems and networks. Design and dimension of photonic communication systems and networks

Content

- Properties and imperfections of optical transmission systems: dispersion, non linearities, chirp, mode partition, etc. Special fibers. Solitons.
- Coherent transmission systems: coherent sources, modulation methods, heterodyne and homodyne coherent reception; advantages and applications.
- Multiplexing techniques: subcarrier multiplexing (SCM), wavelength division (WDM), optical frequency and time division (OFDM, OTDM). Crosstalk problems.
- Topology and morphology of photonic networks: core and access network. «Last mile» problem. Possibilities and limits.
- Planning: operation and capacity management, power budget, optical amplification, wavelength assignment. Reliability and economic aspects.

Keywords

Fiber optics, chromatic dispersion, wavlength division multiplexing (WDM), all-optical networks

Learning Prerequisites

Recommended courses

Telecommunication systems. Optical signal processing.

Teaching methods

Ex cathedra with examples and demos. Exercises in class and group discussions. Project

Expected student activities

Attendance at lectures. Completing exercices. Doing a project.

Assessment methods

Oral examination (2/3) Project (1/3)

Resources

Optical communications Page 1 / 2

Notes/Handbook

Ch. Gaumier, P,-G. Fontolliet - Communications optiques (in French)

Optical communications Page 2 / 2