MICRO-470

Scaling laws & simulations in micro & nanosystems

Quack Niels, Renaud Philippe, Shea Herbert

	,	11 /			
Cursus		Sem.	Туре	l anguage of	Fr
Electrical and Electronical E	Engineering	MA1, MA3	Opt.	teaching	L11
Microtechnics		MA1, MA3	Obl.	Credits Session Semester Exam Workload Weeks Hours Courses Exercises Number of positions	4 Wir Fall Ora 120 14 4 w 3 w 1 w

Summary

This class combines an analytical and finite elements modeling (FEM) simulations approach to scaling laws in MEMS/NEMS. The dominant physical effects and scaling effects when downsizing sensors and actuators in microsystems are discussed, across a broad range of actuation principles.

Content

The following topics are introduced and **analytical modeling** and **scaling laws** are discussed.

Introduction to scaling laws

Scaling of classical mechanical systems, scaling of classical electrical systems, breakdown in scaling, quantum breakdown

Thermal effects

Conduction, convection, dynamics, breakdown, thermal micro-actuators.

Mechanical devices

Mass-spring model, mechanical noise, squeeze film effects.

• Electrical devices

Electrostatic micro-actuators, electrostatic breakdown, tunnel sensors, coils and inductors, electromagnetic micro-actuators, magnetic beads.

• Microfluidics & Nanofluidics

Liquid flow, gas flow, mixing, surface tension, chromatography.

Electrokinetics

Dielectrophresis, EHD and MHD pumps, electrowetting.

The following topics are introduced and **hands-on finite modeling** is performed using COMSOL Multiphysics for typical microsystems. For a selected set of problems, **lumped element modeling** is introduced and discussed.

Introduction to Finite Element Modeling

Meshing, convergence, material models.

Structural Mechanics FEM

Boundary conditions, loads, nonlinear geometry, modal analysis.

Thermal FEM

Electro-thermo-mechanical coupling.

Electro-Static FEM

Fields, boundary conditions, parallel-plate actuator, voltage-displacement, comb drive actuator.

• FEM and Failure Modes at the Microscale

Pull-in, buckling, stress concentration.

Keywords

Micro-Electro-Mechanical Systems (MEMS) Nano-Electro-Mechanical Systems (NEMS) Scaling Finite Element Method (FEM) Lumped Element Model (LEM) Electrostatics Electromagnetic Fluidic Cantilever COMSOL

Learning Prerequisites

Required courses Capteurs

Important concepts to start the course solid grasp of electromagnetics, electrostatics, fluid dynamics knowledge of analysis of electrical circuits mastery of Matlab

Learning Outcomes

By the end of the course, the student must be able to:

- Analyze MEMS designs
- Exploit scaling laws in MEMS
- Predict performance of MEMS devices analytically and by simulation
- Take into consideration how different actuation principles scale with size
- Compare different MEMS physical principles

Transversal skills

- Plan and carry out activities in a way which makes optimal use of available time and other resources.
- Use a work methodology appropriate to the task.
- Communicate effectively, being understood, including across different languages and cultures.
- Negotiate effectively within the group.

Teaching methods

ex-cathedra problem sets simulations tutorials simulation projects

Expected student activities

attend all lectures attend all FEM tutorial sessions read assigned papers do the problem sets

Assessment methods

project oral exam