

#### EE-442 Wireless receivers: algorithms and architectures

| 9                                       |          |      |
|-----------------------------------------|----------|------|
| Cursus                                  | Sem.     | Type |
| Electrical Engineering                  |          | Opt. |
| Electrical and Electronical Engineering | MA1, MA3 | Obl. |
| MNIS                                    | MA3      | Opt. |

Burg Andreas Peter

| Language of teaching | English    |
|----------------------|------------|
| Credits              | 4          |
| Session              | Winter     |
| Semester             | Fall       |
| Exam                 | During the |
|                      | semester   |
| Workload             | 120h       |
| Weeks                | 14         |
| Hours                | 4 weekly   |
| Courses              | 2 weekly   |
| Exercises            | 2 weekly   |
| Number of            |            |
| positions            |            |

## **Summary**

The students will learn about the basic principles of wireless communication systems, including transmission and modulation schemes as well as the basic components and algorithms of a wireless receiver. They develop an understanding for the wireless channel and system performance and limitations.

#### Content

#### **Fundamentals**

Baseband and passband signals, digital modulation, vector-space representation, matched filtering, maximum-likelihood estimation, performance metrics

# Synchronized receiver

Carrier frequency and sampling frequency offset, time- and frequency synchronization, interpolation, equalization, diversity receiver

#### The wireless channel

Basic AWGN channel, signal propagation and attenuation, fading channels, multipath propagation, Doppler shift Wideband modulation

Multicarrier communication, orthogonal frequency division multiplexing (OFDM), training based channel estimation and equalization for OFDM, synchronization, tracking, some OFDM based communication standards

#### Final PROJECT: Accoustic OFDM transceiver

We built an accoustic communication system based on OFDM as final project.

#### **Keywords**

Wireless, Communications, Wireless Channel, Digital Receiver, OFDM

## **Learning Prerequisites**

## Important concepts to start the course

Fundamentals of signal processing (FFT, LTS, filters, linear algebra, basic probability calculus)

## **Learning Outcomes**

By the end of the course, the student must be able to:

- · Construct a basic wireless transmitter
- Explain the performance limitations of a wireless system
- Derive basic optimum receiver structures
- Develop a simulation model of a wireless system



• Develop a basic OFDM communication systems

# Transversal skills

- Make an oral presentation.
- Use a work methodology appropriate to the task.

# **Teaching methods**

Ex-cathedra lectures, computer labs using MATLAB, a final hands-on project

# **Assessment methods**

Mid-term exam (theory and MATLAB) & Final Project (accoustic OFDM transceiver)

## **Prerequisite for**

EE-543 Advanced Wireless Receivers