PHYS-415 Particle physics I

	Shchutska Lesya				
Cursus		Sem.	Туре	Language of	English
Ingphys		MA1, MA3	Opt.	teaching	English
Physicien		MA1, MA3	Opt.	Credits Session	4 Winter
				Semester	Fall
				Exam	Oral
				Workload	120h
				Weeks	14
				Hours	4 weekly
				Courses	2 weekly
				Exercises	2 weekly
				Number of	

Summary

Presentation of particle properties, their symmetries and interactions. Introduction to quantum electrodynamics and to the Feynman rules.

positions

Content

Introduction:

The Standard Model, a step toward the Grand Unification. Particle detection, accelerators, natural radioactivity, cosmic rays. Particle physics and Astrophysics and Cosmology. Relativity, equations of Klein-Gordon and Dirac.

Properties of particles:

Mass, charge, lifetime, spin, magnetic moment,...

Symmetries and conservation laws:

Invariance under space translation and rotation, parity, time reversal and charge conjugation. Violation of parity and CP, CPT theorem. Isospin.

QED:

Introduction to QED. The Feynman rules. The form factors.

Learning Prerequisites

Recommended courses

Nuclear and Particle Physics I and II, Quantum mechanics I and II

Learning Outcomes

By the end of the course, the student must be able to:

Analyze sub-microscopical phenomena

Teaching methods

Ex cathedra and exercises in class

Assessment methods

oral exam (100%)

Supervision

Assistants Yes

Resources

Bibliography Mark Thomson, "Modern Particle Physics" (2013)

Ressources en bibliothèque

Mark Thomson, "Modern Particle Physics" (2013)

Websites

• http://pdg.lbl.gov/

Moodle Link

• https://moodle.epfl.ch/course/view.php?id=14833