PHYS-400 Selected topics in nuclear and particle physics

	Blanc Frédéric				
Cursus		Sem.	Туре	Language of	English
Ingphys		MA2, MA4	Opt.	teaching	English
Physicien		MA2, MA4	Opt.	Credits Session Semester Exam Workload Weeks Hours Courses Exercises Number of	4 Summer Spring Oral 120h 14 4 weekly 2 weekly 2 weekly
					2 week

Summary

This course presents the physical principles and the recent research developments on three topics of particle and nuclear physics: the physics of neutrinos, dark matter, and plasmas of quarks and gluons. An emphasis is given on experimental aspects in these three fields.

Content

Neutrino physics:

- Neutrino mass measurements, beta and double-beta decay experiments.
- Neutrino mass generation mechanism, Majorana and Dirac particles.
- Neutrino oscillations, MNS matrix.
- Cosmic neutrinos : origin, energy spectrum and detection.

Dark matter:

- Evidence for dark matter from astronomical and cosmological data.
- Relic particles of the "Big bang". Candidates for dark matter, and link with particle physics beyond the Standard Model.
- Direct and indirect searches for dark matter.

Quark gluon plasma (QGP):

• Plasma of quarks and gluons: properties, plasma signatures, production in the collisions of heavy ions.

Learning Prerequisites

Required courses Nuclear and particle physics I and II (PHYS-311, PHYS-312)

Recommended courses Quantum physics I and II (PHYS-313, PHYS-314), Particle physics I (PHYS-415)

Learning Outcomes

By the end of the course, the student must be able to:

• Interpret fundamental results in neutrino, dark matter, and quark and gluon plasma physics

- Identify the physical observables in these three fields of research
- Discuss the experimental principles in these fields
- Assess / Evaluate the experimental methods and results presented in scientific publications
- Estimate the experimental sensitivity of experiments

Teaching methods

Ex cathedra and exercises in the classroom

Assessment methods

oral exam (100%)

Supervision

Office hours	No
Assistants	Yes
Forum	No

Resources

Moodle Link

• https://moodle.epfl.ch/course/view.php?id=2861