MATH-448 Statistical analysis of network data

	Olhede Sofia Charlotta				
Cursus		Sem.	Туре	l anguage of	English
Ingmath		MA2, MA4	Opt.	teaching	Linglish
Mathématicien		MA2	Opt.	Credits Session	5 Summer
				Semester Exam	Spring Written
				Workload Weeks	150h 14
				Hours Courses	4 weekly 2 weekly

Summary

A first course in statistical network analysis and applications.

Content

- Basic description of a network and its generalizations (e.g. hypergraphs).
- Network examples from a practical point of view.
- Simple network summaries such as the degree distribution.
- Sparse and dense networks. Edge versus node models.
- Statistical implications of probabilistic properties of large networks.
- Erdos Renyi networks, simple models (configuration and stochastic block models).
- Sampling properties of network summaries.
- Fitting simple network models.
- Multilayer networks and directed networks
- Hypergraphs
- Exchangeability and probabilistic symmetries.
- Other topics as time permits.

Keywords

- network/graph
- Erdos-Renyi, configuaration and stochastic block models
- network summaries
- sparse networks
- exchangeability

Learning Prerequisites

Required courses

• Probability and Statistics

Recommended courses

2 weekly

Exercises

Number of positions

Important concepts to start the course

• The material from first courses in probability and statistics.

Learning Outcomes

By the end of the course, the student must be able to:

- Recognize when a network model is appropriate
- Compute simple network summaries
- Assess / Evaluate parameters of basic network models from data
- Assess / Evaluate a range of network models and understand their properties
- · Assess / Evaluate the implications of model symmetries

Teaching methods

Ex cathedra lectures and exercises

Assessment methods

Final exam.

Supervision

Office hours	No
Assistants	Yes
Forum	No

Resources

Virtual desktop infrastructure (VDI) No

Bibliography

- R. Durrett: Random Graph Dynamics. Cambridge University Press 2007.
- E.D. Kolaczyk: Statistical Analysis of Network Data. Springer, 2009-
- Ibid Topics at the Frontier of Statistics and Network Analysis: (Re)Visiting The Foundations (SemStat Elements)-
- R. van der Hofstad. Random Graphs and Complex Networks Volume One, 2016 ·
- M. Newman: Networks: An Introduction, OUP 2010.

Ressources en bibliothèque

- Statistical Analysis of Network Data
- Random Graph Dynamics.
- ewman: Networks:
- Random Graphs and Complex Networks

Notes/Handbook