

ChE-304 Energy systems engineering

Luterbacher Jeremy		
Cursus	Sem.	Туре
Chemical Engineering	BA6	Obl.
Energy Science and Technology	MA2, MA4	Opt.
HES - CGC	Е	Obl.
Minor in Engineering for sustainability	E	Opt.

Language of teaching	English
Credits	3
Session	Summer
Semester	Spring
Exam	During the semester
Workload	90h
Weeks	14
Hours	3 weekly
Courses	2 weekly
Exercises	1 weekly
Number of positions	

Summary

This course will provide a toolkit to students to understand and analyze sustainable energy systems. In addition, the main sustainable energy technologies will be introduced and their governing principles explained.

Content

- 1. Basics of energy analysis
 - Technical aspects of energy: Thermodynamics of energy conversion
 - Systems modeling
- 2. Global energy analysis
 - Energy: issues, definitions and resources
 - Energy economics
- 3. Sustainable energy technologies (the technologies covered will vary year to year depending on guest lecturers)
 - Energy Storage, management and distribution
 - Fossil energy and carbon sequestration
 - Geothermal energy
 - Hydropower
 - Wind energy
 - Solar energy
 - · Biomass conversion and bioenergy

Learning Prerequisites

Required courses

Thermodynamics, General Chemistry

Recommended courses

Introduction to Chemical Engineering I and II

Learning Outcomes

By the end of the course, the student must be able to:

- Analyze a renewable energy system
- Describe the working principles of the principle sustainable energy technologies
- Describe the main issues pertaining to the global energy supply
- Analyze the thermodynamics of a sustainable enrgy system
- Perform a simple systems analysis of a renewable energy system
- Analyze the economics of a sustinable energy system

Teaching methods

Course with examples, case studies and exercises

Assessment methods

Continuous: one in-class exam and a project to be turned in.