

2 weekly

COM-102 Advanced information, computation, communication II

Gastpar Michael		
	Sem.	Тур
cation systems	BA2	Obl.

Cursus	Sem.	Type	Language of	English
Communication systems	BA2	Obl.	teaching	Liigiisii
Computer science	BA2	Obl.	Coefficient Session	7 Summer
			Semester Exam Workload Weeks Hours Courses	Spring Written 210h 14 6 weekly 4 weekly

Exercises Number of

positions

Summary

Text, sound, and images are examples of information sources stored in our computers and/or communicated over the Internet. How do we measure, compress, and protect the informatin they contain?

Content

- I. How to measure information. Source and probability. Entropy per symbol. Source coding.
- II. Cryptography and information security. Modular arithmetic, modern algebra and number theory. The Chinese remainder theorem and RSA.
- III. Protecting information. A few finite fields. Linear speaces. Hamming distance. Linear codes. Reed-Solomon codes.

Keywords

Shannon's entropy Linear codes Reed-Solomon codes Number theory Asymmetric Cryptography, RSA

Learning Outcomes

By the end of the course, the student must be able to:

- Understand Shannon's entropy
- · Construct an optimal code
- · Understand elementary number theory
- Know what an abelian group is
- · Recognize a hidden isomorphism
- Know how RSA works
- Know a few linear codes on simple finite fields

Transversal skills

- Take feedback (critique) and respond in an appropriate manner.
- Assess one's own level of skill acquisition, and plan their on-going learning goals.

Teaching methods

Ex cathedrra with exercises

Expected student activities

Homework (written and grades) ever week.

Assessment methods

Continuous evaluations 10% and final exam 90%

Resources

Bibliography

"Sciences de l'information", J.-Y. Le Boudec, R. Urbanke et P. Thiran, online

Ressources en bibliothèque

• Introduction aux sciences de l'information : entropie, compression, chiffrement et correction d'erreurs / Le Boudec

Moodle Link

• http://moodle.epfl.ch/course/view.php?id=851