

CS-430 Intelligent agents

Cursus	Sem.	Туре	Language of	English
Computer and Communication Sciences		Opt.	teaching	Linglish
Computer science minor	н	Opt.	Credits Session	6 Winter
Computer science	MA1, MA3	Opt.	Semester	Fall During the semester 180h
Cybersecurity	MA1, MA3	Opt.	Exam	
Data Science	MA1, MA3	Opt.	Workload	
Data science minor	Н	Opt.	Weeks	14
Energy Management and Sustainability	MA1, MA3	Opt.	Hours Courses	6 weekly 3 weekly
Financial engineering minor	Н	Opt.	Exercises	3 weekly
Financial engineering	MA1, MA3	Opt.	Number of positions	
Learning Sciences		Obl.	positions	
Robotics, Control and Intelligent Systems		Opt.		
Robotics	MA1, MA3	Opt.		
SC master EPFL	MA1, MA3	Opt.		

Remark

pas donné en 2021-22

Summary

Software agents are widely used to control physical, economic and financial processes. The course presents practical methods for implementing software agents and multi-agent systems, supported by programming exercises, and the theoretical underpinnings including computational game theory.

Content

The course contains 4 main subject areas:

1) Basic models and algorithms for individual agents:

Models and algorithms for rational, goal-oriented behavior in agents: reactive agents, reinforcement learning,

exploration-exploitation tradeoff, AI planning methods.

2) Multi-agent systems:

multi-agent planning, coordination techniques for multi-agent systems, distributed algorithms for constraint satisfaction. 3) Self-interested agents:

Models and algorithms for implementing self-interested agents motivated by economic principles: elements of computational game theory, models and algorithms for automated negotiation, social choice, mechanism design, electronic auctions and marketplaces.

4) Implementing multi-agent systems:

Agent platforms, ontologies and markup languages, web services and standards for their definition and indexing.

Learning Prerequisites

Recommended courses

Intelligence Artificielle or another introductory course to AI

Learning Outcomes

By the end of the course, the student must be able to:

• Choose and implement methods for rational decision making in software agents, based on decision processes and AI planning techniques

- Choose and implement methods for efficient rational decision making in teams of multiple software agents
- Model scenarios with multiple self-interested agents in the language of game theory
- Evaluate the feasibility of achieving goals with self-interested agents using game theory
- Design, choose and implement mechanisms for self-interested agents using game theory
- Implement systems of software agents using agent platforms

Teaching methods

Ex cathedra, practical programming exercises

Expected student activities

Lectures: 3 hours Reading: 3 hours Assignments/programming: 4 hours

Assessment methods

Mini-projects and exercises 40%, final exam 60%

Resources

Bibliography

Michael Wooldridge : An Introduction to MultiAgent Systems - Second Edition, John Wiley & Sons, 2009 Stuart Russell and Peter Norvig: Artificial Intelligence: A Modern Approach (2nd/3rd Edition), Prentice Hall Series in Artificial Intelligence, 2003/2009.

Ressources en bibliothèque

- Artificial Intelligence: A Modern Approach / Russell
- An Introduction to MultiAgent Systems / Wooldridge

Websites

- http://liawww.epfl.ch/
- http://moodle.epfl.ch/