

EE-512 Biomedical signal processing

Vesin Jean-Marc				
Cursus	Sem.	Type	Language of	English
Biomedical technologies minor	Н	Opt.	teaching	Liigiisii
Computer science	MA1, MA3	Opt.	Credits Session	6 Winter Fall Written 180h 14
Cybersecurity	MA1, MA3	Opt.	Semester	
Electrical and Electronical Engineering	MA1, MA3	Opt.	Exam	
Life Sciences Engineering	MA1, MA3	Opt.	Workload Weeks	
SC master EPFL	MA1, MA3		6 weekly	
			Courses	4 weekly
			Project Number of positions	2 weekly

Summary

The goal of this course is to introduce the techniques most commonly used for the analysis of biomedical signals, and to present concrete examples of their application for diagnosis purposes.

Content

- 1. Generalities on biomedical signal processing
- 2. Digital signal processing basics
 - sampling
 - Fourier transform
 - filtering
 - stochastic signals correlation, and pwoer spectral density

3. Time-frequency analysis

- short-term Fourier transform
- time-frequency distributions, Cohen's class
- wavelet transform

4. Linear modeling

- autoregressive models
- linear prediction
- parametric spectral estimation
- criteria for model selection

5. Adaptive filtering

- · adaptive prediction
- adaptive estimation of transfert functions
- adaptive interference cancellation

6. Miscellaneous

- · polynomial models
- singular value decomposition
- principal component analysis

Keywords

signal processing, biomedical engineering, signal modeling, spectral analysis, adaptive filtering

Learning Prerequisites

Recommended courses

Signal processing for telecommunications COM-303 Signal processing EE-350

Important concepts to start the course

basics of discrete-time signal analysis

Teaching methods

lectures, lab sessions using Matlab

Assessment methods

1 point for lab/exercise sessions reports

2 exams: end of November 2points - final exam 3 points

Supervision

Office hours Yes Assistants Yes