CS-453	Concurrent algorithms				
	Guerraoui Rachid				
Cursus		Sem.	Туре	Language of	English
Computer science		MA1, MA3	Opt.	teaching Credits	Linglion
Cybersecurity		MA1, MA3	Opt.		5 Winter Fall Written
Data Science		MA1, MA3	Opt.	Session Semester	
SC master EPFL		MA1, MA3	Opt.	Exam	
				Workload	150h
				Weeks	14
				Hours	5 weekly
				Courses	3 weekly
				Exercises	1 weekly
				TP	1 weekly
				Number of	

Summary

With the advent of multiprocessors, it becomes crucial to master the underlying algorithmics of concurrency. The objective of this course is to study the foundations of concurrent algorithms and in particular the techniques that enable the construction of robust such algorithms.

Content

Model of a parallel system A multicore architect Processes and objects Safety and liveliness

Parallel programming

Automatic parallelism Mutual exclusion and locks Non-blocking data structures

Register Implementations

Safe, regular and atomic registers General and limited transactions Atomic snapshots

Hierarchy of objects

The FLP impossibility The consensus number Universal constructions **Transactional memories** Transactional algorithms Opacity and obstruction-freedom

Keywords

Concurrency, parallelism, algorithms, data structures

Learning Prerequisites

Required courses ICC, Operatings systems

Recommended courses

positions

This course is complementary to the Distributed Algorithms course.

Important concepts to start the course Processes, threads, datas structures

Learning Outcomes

By the end of the course, the student must be able to:

- Reason in a precise manner about concurrency
- Design a concurrent algorithm
- Prove a concurrent algorithm
- Implement a concurrent system

Teaching methods

Lectures, exercises and practical work

Expected student activities

Midterm and final exam Project

Assessment methods

With continuous control, midterm final exams and project

Supervision

Office hours	Yes
Assistants	Yes
Forum	No

Resources

Notes/Handbook Concurrent Algorithms, R. Guerraoui and P. Kouznetsov

Websites

http://lpd.epfl.ch/site/education