

Number of positions

CS-524 Computational complexity

Göös Mika				
Cursus	Sem.	Type	Language of	English
Computer science	MA1, MA3	Opt.	teaching	Liigiisii
Cybersecurity	MA1, MA3	Opt.	Credits Session Semester	4
Data Science	MA1, MA3	Opt.		Winter Fall
SC master EPFL	MA1, MA3	Opt.	Exam	During the semester
			Workload	120h
			Weeks	14
			Hours	4 weekly
			Courses	3 weekly
			Exercises	1 weekly

Summary

In computational complexity we study the computational resources needed to solve problems and understand the relation between different types of computation. This course advances the students knowledge of computational complexity, and develop an understanding of fundamental open questions.

Content

- Complexity classes (time, space, nondeterminism)
- Space complexity (Logspace, L=NL)
- Boolean circuits and nonuniform computation
- Power of randomness (interactive proofs, IP=PSPACE)
- Lower bounds for concrete models of computation: Decision trees, communication protocols, propositional proofs.

Keywords

theoretical computer science computational complexity

Learning Prerequisites

Recommended courses

Theory of computation (CS-251) Algorithms (CS-250)

Learning Outcomes

By the end of the course, the student must be able to:

- Demonstrate an understanding of computational complexity and the P vs NP problem
- Formalize and analyze abstractions of complex scenarios/problems
- Express a good understanding of different concepts of proofs
- Prove statements that are similar to those taught in the course
- Use and understand the role of randomness in computation

- Explain recent exciting developments in theoretical computer science
- Compare different models of computation

Transversal skills

- · Demonstrate the capacity for critical thinking
- Summarize an article or a technical report.

Teaching methods

Lecturing and exercises

Expected student activities

Actively attending lectures and exercise sessions. Also homeworks and exam.

Assessment methods

Three homeworks and final exam

Supervision

Office hours Yes
Assistants Yes
Forum Yes

Resources

Virtual desktop infrastructure (VDI)

No

Bibliography

Sanjeev Arora and Boaz Barak: Computational Complexity: A Modern Approach, Cambridge University Press.

Stasys Jukna: Boolean Function Complexity, Springer

Ressources en bibliothèque

- Computational Complexity: A Modern Approach / Arora
- Boolean Function Complexity / Stasys

Websites

• http://theory.epfl.ch/courses/complexity/