

CS-422 Database systems

Ailamaki Anastasia		
Cursus	Sem.	Type
Computer and Communication Sciences		Obl.
Computer science minor	Е	Opt.
Computer science	MA2, MA4	Obl.
Cybersecurity	MA2, MA4	Obl.
Digital Humanities	MA2, MA4	Opt.
SC master EPFL	MA2, MA4	Opt.

Language of teaching	English
Credits	7
Session	Summer
Semester	Spring
Exam	Written
Workload	210h
Weeks	14
Hours	7 weekly
Courses	3 weekly
Exercises	2 weekly
Project	2 weekly
Number of positions	

Summary

This course is intended for students who want to understand modern large-scale data analysis systems and database systems. It covers a wide range of topics and technologies, and will prepare students to be able to build such systems as well as read and understand recent research publications.

Content

- Database systems
- · Online analytics; data stream processing
- Column stores
- Decision support systems and data warehouses
- Large-scale data analytics infrastructure and systems
- Transaction processing. OLTP systems and concurrency control algorithms
- Distributed data management systems
- Query optimization; database tuning
- Logging and recovery
- Modern storage hierarchies

Learning Prerequisites

Required courses

- CS-107: Introduction to programming
- CS-322: Introduction to database systems
- CS-323: Introduction to operating systems
- CS-452: Foundations of software

Recommended courses

Learning Outcomes

Database systems Page 1 / 2

By the end of the course, the student must be able to:

- · Design big data analytics systems using state-of-the-art infrastructures for horizontal scaling, e.g., Spark
- Implement algorithms and data structures for streaming data analytics
- Decide between different storage models based on the offered optimizations enabled by each model and on the expected query workload
- · Compare concurrency control algorithms, and algorithms for distributed data management
- Identify performance culprits, e.g., due to concurrency control

Teaching methods

Lectures, project, homework, exercises

Expected student activities

During the semester, the students are expected to:

- attend the lectures in order to ask questions and interact with the professor,
- attend the exercise sessions to solve and discuss exercises about the recently taught material,
- work on projects, which cover the practical side of the taught material,
- take a midterm,
- · take a final exam,
- read scientific papers related to the course material

Assessment methods

- project
- exams

Supervision

Office hours Yes

Others Office hours on request. Q&A sessions in lectures and exercises.

Resources

Bibliography

- J. Hellerstein & M. Stonebraker, Readings in Database Systems, 4th Edition, 2005
- R. Ramakrishnan & J. Gehrke: "Database Management Systems", McGraw-Hill, 3rd Edition, 2002.
- A. Rajaraman & J. Ullman: "Mining of Massive Datasets", Cambridge Univ. Press, 2011.

Ressources en bibliothèque

- Database Management Systems / Ramakrishnan
- Mining of Massive Datasets / Rajaraman
- Readings in Database Systems / Hellerstein

Database systems Page 2 / 2