CS-523

Lueks Wouter				
Cursus	Sem.	Туре	Language of	English
Computer and Communication Sciences		Obl.	teaching	Linglish
Computer science	MA2, MA4	Opt.	Credits	7
Cybersecurity	MA2, MA4	Opt.	Session Semester	Summer Spring
Data Science	MA2, MA4	Opt.	Exam	Written
SC master EPFL	MA2, MA4	Opt.	Workload	210h
			Weeks Hours Courses Exercises Project Number of positions	14 6 weekly 3 weekly 1 weekly 2 weekly

Summary

This advanced course will provide students with the knowledge to tackle the design of privacy-preserving ICT systems. Students will learn about existing technologies to protect privacy, and how to evaluate the protection they provide.

Content

The course will cover the following topics:

Privacy definitions and concepts.

•

Privacy-preserving cryptographic solutions: anonymous credentials, zero-knowledge proofs, secure multi-party computation, homomorphic encryption, Private information retrieval (PIR), Oblivious RAM (ORAM)

Anonymization and data hiding: generalization, differential privacy, etc

•

Machine learning and privacy

•

Protection of metadata: anonymous communications systems, location privacy, censorpship resistance.

.

Online tracking and countermeasures

٠

Privacy engineering: design and evaluation (evaluation metrics and notions)

٠

Legal aspects of privacy

Keywords

Privacy, anonymity, homomorphic encryption, secure multi-paty computation, anonymous credentials, ethics

Learning Prerequisites

Required courses COM-402 Information Security and Privacy

COM-301 Computer Security

Recommended courses COM-401 Cryptography

Important concepts to start the course Basic programming skills; basics of probabilities and statistics; basics of cryptography

Learning Outcomes

By the end of the course, the student must be able to:

- Select appropriately privacy mechanisms
- Develop privacy technologies
- Assess / Evaluate privacy protection
- Reason about privacy concerns

Teaching methods

Lectures and written exercises to deepen understanding of concepts

Programming-oriented assignments to practice use of privacy technologies

Expected student activities

Participation in the lectures. Active participation is encouraged. Participation in exercise session and complete the exercises regularly Completion of programming assignments

Assessment methods

Lab project (40%) Midterm (20%) Final exam (40%)

Supervision

Office hours	Yes
Assistants	Yes
Forum	Yes