MICRO-512	Image	processing	11
-----------	-------	------------	----

Liebling Michael, Sage Daniel, Unser Michaël, Van De Ville Dimitri

Cursus	Sem.	Туре	Language of	English 3 Summer Spring Written 90h 14 3 weekly 3 weekly
Biocomputing minor	Е	Opt.	teaching	
Computational Neurosciences minor	E	Opt.	Credits	
Computational science and Engineering	MA2, MA4	Opt.	Semester	
Computer science	MA2, MA4	Opt.	Exam	
Cybersecurity	MA2, MA4	Opt.	Workload	
Digital Humanities	MA2, MA4	Opt.	Hours	
Life Sciences Engineering	MA2, MA4	Opt.	Courses	
Microtechnics	MA2, MA4	Opt.	positions	
Neuroprosthetics minor	E	Opt.		
Photonics minor	E	Opt.		
Robotics, Control and Intelligent Systems		Opt.		
Robotics	MA2, MA4	Opt.		
SC master EPFL	MA2, MA4	Opt.		

Summary

Study of advanced image processing; mathematical imaging. Development of image-processing software and prototyping in JAVA; application to real-world examples in industrial vision and biomedical imaging.

Content

- Review of fundamental notions. Multi-dimensional Fourier transform. Convolution. z-transform. Digital filters.
- **Continuous representation of discrete data.** Splines. Interpolation. Geometric transformations. Multi-scale decomposition (pyramids and wavelets).
- Image transforms. Karhunen-Loève transform (KLT). Discrete cosine transform (DCT). JPEG coding. Image pyramids. Wavelet decomposition.
- **Reconstruction from projections.** X-ray scanners. Radon transform. Central slice theorem. Filtered backprojection. Iterative methods.
- Deconvolution. Inverse and Wiener filtering. Matrix formulations. Iterative techniques (ART).
- Statistical pattern classification. Decision making. Bayesian classification. Parameter estimation. Supervised learning. Clustering.
- Image analysis. Pixel classification. Contour extraction and representation. Shape. Texture. Snakes and active contours.

Learning Prerequisites Required courses Image Processing I

Recommended courses Signals and Systems I & II, linear algebra, analysis

Important concepts to start the course

Basic image processing and related analytical tools (Fourier transform, z-tranform, etc.)

Learning Outcomes

By the end of the course, the student must be able to:

- Construct interpolation models and continuous-discrete representations
- Analyze image transforms
- Design image-reconstruction algorithms
- Formalize multiresolution representations using wavelets
- Design deconvolution algorithms
- Perform image analysis and feature extraction
- Design image-processing software (plugins)
- Synthesize steerable filters

Transversal skills

- Plan and carry out activities in a way which makes optimal use of available time and other resources.
- Manage priorities.
- Access and evaluate appropriate sources of information.
- Use both general and domain specific IT resources and tools