

# MICRO-461 Low-power radio design for IoT

Enz Christian

| Cursus                                  | Sem.     | Туре |
|-----------------------------------------|----------|------|
| Data and Internet of Things minor       | Е        | Opt. |
| Electrical and Electronical Engineering | MA2, MA4 | Opt. |
| Microtechnics                           | MA2, MA4 | Opt. |

| Language of teaching | English  |
|----------------------|----------|
| Credits              | 3        |
| Session              | Summer   |
| Semester             | Spring   |
| Exam                 | Written  |
| Workload             | 90h      |
| Weeks                | 14       |
| Hours                | 3 weekly |
| Courses              | 2 weekly |
| Exercises            | 1 weekly |
| Number of positions  |          |

## **Summary**

The basic function of an IoT node is to collect data and send it through a wireless channel to the cloud. Since the power consumption of an IoT node is largely dominated by the wireless communication, it is therefore key to understand the trade-offs faced when designing the radio.

#### Content

- Introduction to the IoT.
- Brief description of the IoT wireless standards.
- General architecture of an IoT node.
- IoT radio architectures.
- Building blocks analysis and optimization in terms of power consumption, including LNA, mixer, oscillator, frequency synthesis, PA, baseband.
- Examples of a simple BTLE radio.

### **Keywords**

IoT, IoT node, low-power, wireless communication, radios

## **Learning Prerequisites**

## **Required courses**

- Analog Integrated Circuit Design
- Advanced Analog and RF IC Design

## **Learning Outcomes**

By the end of the course, the student must be able to:



- Analyze the power consumption in IoT radios.
- Develop an appropriate solution for an IoT radio.
- Synthesize the radio specifications.
- Elaborate the design of a IoT radio optimized for low-power operation.
- Model the different building blocks of a low-power radio.
- Explore the overall system perspectives and broader trade-off in the context of the IoT.

### **Teaching methods**

- Lectures.
- · Exercises.

## **Assessment methods**

Written exam.

#### Resources

### **Bibliography**

- 1. Enabling the Internet of Things From Integrated Circuits to Integrated Systems, Massimo Alioto, Editor, Springer 2017.
- 2. B. Razavi, RF Microelectronics, 2nd ed. Pearson, 2012.
- 3. T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed. Cambridge University Press. 2004.

### Ressources en bibliothèque

- The Design of CMOS Radio-Frequency Integrated Circuits / Lee
- Enabling the Internet of Things â## From Integrated Circuits to Integrated Systems / Alioto
- RF Microelectronics / Razavi