MICRO-723 Deep Learning for Optical Imaging

Borhani Navid, Psaltis Demetri

Cursus	Sem.	Туре	Language of teaching Credits Withdrawal Session Semester	English 2 Unauthorized Summer Spring During the semester
Electrical and Electronical Engineering	MA2, MA4	Opt.		
Microtechnics	MA2, MA4	Opt.		
Photonics		Opt.		
Robotics	MA2, MA4	Opt.		
			Exam	

Credits2WithdrawalUnauthorizedSessionSummerSemesterSpringExamDuring the
semesterWorkload60hWeeks14Hours3 weeklyCourses1 weeklyExercises1 weeklyTP1 weeklyNumber of
positionsIt is not allowed to withdraw

from this subject after the registration deadline.

Remark

Next time: Spring 2022

Summary

This course will focus on the practical implementation of artificial neural networks (ANN) using the open-source TensorFlow machine learning library developed by Google for Python.

Content

This course will focus on the practical implementation of artificial neural networks (ANN) using the open-source TensorFlow machine learning library developed by Google for Python. After a brief introduction to deep neural networks, the course will focus on the use and functionality of TensorFlow, and how it can be used to build models of different complexity for different types of optical imaging applications. Models will range from simple linear regression to convolutional neural networks (CNN) for image classification and mapping. The course will be assessed through coursework and group projects where the students will apply TensorFlow to specific machine learning applications.

Keywords

Deep learning, TensorFlow, Artificial neural networks, Imaging

Learning Prerequisites

Required courses Proficiency in Python, basic optics

Recommended courses MICRO-567 Optical Wave Proagation

Important concepts to start the course Python familiarity, linear systems, basic optics

Learning Outcomes

By the end of the course, the student must be able to:

- Choose A computational imaging model
- Structure The database for training artificial neural networks
- Implement Artifical neural networks using the TensorFlow machine learning library.

Teaching methods

1 hour/week lecture

1 hour/week interactive artificial neural network develoment for selected problems

Expected student activities

Attend lectures weekly Attend exercise sessions Participate in a class project Turn in homework every two weeks

Assessment methods

Homeworks Project report

Resources Bibliography Tensor flow

Notes/Handbook Class notes will be posted on Moodle