PHYS-438 Fundamentals of biomedical imaging

Gruetter Rolf			
Cursus Ser	n. Type	Language of	Er
Auditeurs en ligne E	Opt.	teaching Credits	Eng 4
Biomedical technologies minor E Computational Neurosciences minor E	Opt. Opt.	Session Semester	Sumn Spring
Electrical Engineering	Opt.	Exam	Writ
Electrical and Electronical Engineering MA	2, MA4 Opt.	Workload Weeks	120l 14
	2, MA4 Opt.	Hours Courses	4 we 2 we
Life Sciences Engineering MA Neuroprosthetics minor E	2, MA4 Opt. Opt.	Exercises	2 we
Photonics	Opt.	Number of positions	
Physicien MA	2, MA4 Opt.		

Summary

The goal of this course is to illustrate how modern principles of basic science approaches are integrated into the major biomedical imaging modalities of importance to biology and medicine, with an emphasis on those of interest to in vivo.

Content

- 1. Introduction to the course, importance and essential elements of bioimaging lab visit of CIBM
- 2. Ultrasound imaging; ionizing radiation and its generation
- 3. X-ray imaging when the photon bumps into living tissue, radioprotection primer
- 4. Computed tomography From projection to image
- 5. Emission tomography what are tracers and how to "trace" them in your body, x-ray detection, scintillation principle
- 6. Positron emission tomography (PET) imaging anti-matter annihilation
- 7. Tracer kinetics modeling of imaging data
- 8. Introduction to biological magnetic resonance (MR) Boltzmann distribution, from spins to magnetization
- 9. Excitation of spins, Relaxation, the Basis of MR contrast (The Bloch Equations)
- 10. MR spectroscopy: In vivo Biochemistry, without chemistry ...
- 11. From Fourier to image: Principles of MR image formation, k-space echo formation
- 12. Basic MRI contrast mechanisms, BOLD fMRI, contrast agents
- 13. Spin gymnastics: Imaging Einstein's random walk fiber tracking. Overview of imaging modalities treated in this course

Keywords

Ultrasound

MRI

PET

SPECT

CT

Radioprotection

Learning Prerequisites

Recommended courses

General Physics I-III

Important concepts to start the course

Fourier transformation

Learning Outcomes

By the end of the course, the student must be able to:

- Deduce which imaging technique is appropriate for a given situation.
- Describe their fundamental promises and limitations
- Differentiate the imaging modalities covered in the course.

Transversal skills

- Assess one's own level of skill acquisition, and plan their on-going learning goals.
- Manage priorities.

Teaching methods

Ex cathedra with experimental demos.

Expected student activities

strong participation in course and exercices.

Assessment methods

a written exam

Resources

Bibliography

"Introduction to biomedical imaging / Andrew Webb". Année:2003. ISBN:0-471-23766-3

Ressources en bibliothèque

• Introduction to Biomedical Imaging / Webb