

	Lin Yongxiao, Raju Chandra	a Sekhar			
Cursus		Sem.	Туре	Language of	English
Ingmath		MA2, MA4	Opt.	teaching	Linglish
Mathématicien		MA2	Opt.	Credits Session	5 Summer
				Semester Exam Workload Weeks Hours Courses Exercises Number of positions	Spring Oral 150h 14 4 weekly 2 weekly 2 weekly

MATH-417 **Topics in number theory**

Summary

This year's topic is "Advanced Analytic Number Theory": this is a continuation of the course MATH-313 "Introduction to Analytic Number Theory". We will cover primes in arithmetic progressions, the Landau-Siegel zero, the Bombieri-Vinogradov Theorem and Vinogradov's three primes theorem (itp).

Content

This year, we will continue the course "Introduction to Analytic Number Theory" with more advanced topics:

- Primes in arithmetic progressions : the Hadamard/de la Vallee-Poussin zero-free regions for Dirichlet L-functions. -The Landau-Siegel zero and the Siegel-Walfisz Theorem.

-Primes in large arithmetic progressions: the large Sieve and the Bombieri-Vinogradov Theorem.

-Ternary additive problems: introduction to the circle method and Vinogradov's Three Primes Theorem:

• Every sufficiently large odd integer is the sum of three prime numbers.

Keywords

Primes numbers Arithmetic progressions L-functions and zero-free regions The large Sieve The circle method

Learning Prerequisites

Required courses Analysis III & IV Introduction to Analytic Number Theory.

Recommended courses

Important concepts to start the course -Good knowledge of analysis in particular Fourier theory and theory of the complex variable.

Learning Outcomes

By the end of the course, the student must be able to:

- Synthesize the analytic aspects of the theory of numbers
- Solve advanced problems in analytic number theory

Transversal skills

- Access and evaluate appropriate sources of information.
- Make an oral presentation.
- Demonstrate the capacity for critical thinking

Teaching methods

Ex-Cathedra Course

Expected student activities

We expect a proactive attitude during the courses and the exercises sessions (possibly with individual presentation of the solution of various problems).

Assessment methods

Oral Exam

Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.

Supervision

Office hours	No
Assistants	Yes
Forum	No
Others	a moodle with ressources for the course will be maintained

Resources

Bibliography Davenport: Multiplicative Number Theory Iwaniec-Kowalski: Analytic Number Theory

Ressources en bibliothèque

- Multiplicative Number Theory / Davenport
- Analytic Number Theory / Iwaniec-Kowalski

Prerequisite for

Current research in number theory