MATH-474 Statistics for genomic data analysis

Cursus	Sem.	Туре	Language of	English
Ingmath	MA2, MA4	Opt.	teaching	Linglish
Mathématicien	MA2	Opt.	Credits Session	5 Summer
			Semester	Spring
			Exam	During the semester
			Workload	150h
			Weeks	14
			Hours	4 weekly
			Courses	2 weekly
			Exercises	2 weekly

Remark

Cours donné en alternance tous les deux ans (pas donné en 2021-22)

Summary

After a short introduction to basic molecular biology and genomic technologies, this course covers the most useful statistical concepts and methods for the analysis of genomic data.

Content

- Molecular biology and technology background
- R software and BioConductor packages
- Robust regression/High-density oligo array signal quantification/Quality assessment for Affymetrix GeneChips
- Empirical Bayes method for identifying differentially expressed genes
- · Linear models for designed experiments
- Hypothesis testing, ROC curves, multiple hypothesis testing
- Gene set testing
- Cluster analysis
- Classical and machine learning methods for classification
- Sequence data (NGS) analysis
- Generalized linear modeling for differential expression (NGS)
- Additional topics as time permits: e.g. Meta-analysis, genome-wide association studies (GWAS)

Keywords

statistics; statistical methods; data analysis; DNA; RNA; mRNA; genomics; genomic data; microarray; sequencing data; NGS; NGS technologies; machine learning; R statistical software; BioConductor

Learning Prerequisites

Important concepts to start the course Elementary statistics Previous experience with R is helpful (but not necessary)

Learning Outcomes

Number of positions

By the end of the course, the student must be able to:

- Apply appropriate methods to analyze genomic data
- Carry out targeted analyses of genomic data
- Design genomic experiments

Transversal skills

- Access and evaluate appropriate sources of information.
- Write a scientific or technical report.

Teaching methods

Lectures and computer practical exercises

Expected student activities

Regular attendance in class, practical exercises, prepare a short report (max. 10 pages) on an analysis of genomic data using tools and methods from the course

Assessment methods

Evaluation is based on a written report of a genomic data analysis project. Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.