

positions

MATH-404 Functional analysis II

Ruf Matthia	as			
Cursus	Sem.	Туре	Language of	English
Ingmath	MA2, MA4	Opt.	teaching	English
Mathématicien	MA2	Opt.	Credits Session	5 Summer
			Semester	Spring
			Exam	Written
			Workload	150h
			Weeks	14
			Hours	4 weekly
			Courses	2 weekly
			Exercises	2 weekly
			Number of	

Summary

We introduce locally convex vector spaces. As an example we treat the space of test functions and the space of distributions. In a second part of the course we discuss differential calculus in Banach spaces and some elements from nonlinear functional analysis.

Content

- locally convex vector spaces
- test functions and the dual space of distributions
- Fréchet-derivative
- implicit function theorem and consequences on Banach spaces
- fixed point theorems
- introduction to degree theory (if time permits)

Keywords

Locally convex vector spaces, test functions and distributions, analysis on Banach spaces, nonlinear functional analysis

Learning Prerequisites

Required courses Analysis I-IV, Linear Algebra I-II, Metric and topological spaces, Functional analysis I

Important concepts to start the course Basic notions from topology, Banach spaces, differential calculus in finite dimensions

Learning Outcomes

By the end of the course, the student must be able to:

- Formulate the definitions and results of the lectures
- Apply the concepts learned in class to concrete problems
- Analyze problems related to the topics treated in the course
- Choose an appropriate method to solve a given problem
- Prove some elementary statements about the topics of the course
- Solve exercises on the topics

Weekly lectures (on blackboard) and exercise sessions with assistant

Expected student activities

Attending the lectures and solving the exercises

Assessment methods

Written exam

Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.

Supervision

Office hours	No
Assistants	Yes
Forum	Yes

Resources

Virtual desktop infrastructure (VDI) No

Bibliography

W. Rudin, Functional Analysis. McGraw-Hill, INc., 1973.

- N. Bourbaki, Espaces Vectoriels Topologiques, Springer, 2007.
- K. Deimling, Nonlinear Functional Analysis, Springer 1985.

Ressources en bibliothèque

• Functional Analysis / Rudin

- Espaces Vectoriels Topologiques / Bourbaki
- Nonlinear Functional Analysis / Deimling

Notes/Handbook

Lecture notes will be available in moodle.