

ChE-204 Introduction to transport phenomena

Buonsanti Raffaella

Cursus	Sem.	Type
Biotechnology minor	E	Opt.
Chemistry and chemical engineering	BA4	Obl.
HES - CGC	Е	Opt.

Language of teaching	English
Credits	3
Session	Summer
Semester	Spring
Exam	During the
	semester
Workload	90h
Weeks	14
Hours	3 weekly
Courses	2 weekly
Exercises	1 weekly
Number of	
positions	

Summary

This course aims at understanding the basic equations behind macroscopic and microscopic transport phenomena (mass, heat and momentum).

Content

- Conservation of energy, heat and momentum
- Macroscopic balances and advective transport
- Bernoulli's equation
- Equations and parameters for microscopic transport: mass transport (Fick's law), heat transport (Fourier's law) and momentum transport (Newton's law)
- · Analogy between the three types of transfer
- Introduction to non-dimensional quantities
- Combined macroscopic and microscopic transfer applications (e.g. pipe flow with friction loss), heat exchangers.

Keywords

macroscopic balances, transport phenomena, flux equation

Learning Prerequisites

Required courses

Introduction to chemical engineering

Learning Outcomes

By the end of the course, the student must be able to:

- Identify heat transfer, mass transfer and momentum phenomena in lab, industrial and daily environment which are relevant both for chemists and chemical engineers
- Identify quantities and subjects used in transport phenomena
- Describe transport phenomena at the macroscopic and at the molecular level
- Recognize the similarities between the three transport phenomena
- Analyze problems involving transfer phenomena
- Use balance to solve problems

• Justify your approach to problem solving

Teaching methods

Lectures with exercises

Expected student activities

solution of exercises

Assessment methods

Two written tests during the semester

Resources

Bibliography

Introductory Transport Phenomena: R. B. Bird, W.E. Stewart, E.N. Lightfoot, D.J. Klingenberg. John Wiley and Sons, Inc. (2014)

Ressources en bibliothèque

• Introductory transport phenomena / Bird

Moodle Link

• https://moodle.epfl.ch/course/view.php?id=15322