ChE-402 Diffusion and mass transfer

Ayrawar Nurr	nar Varoon			
Cursus	Sem.	Туре	Language of	English
Ingchim.	MA1, MA3		Language of teaching Credits Session Semester Exam Workload Weeks Hours Courses Exercises Number of	English 4 Winter Fall Written 120h 14 3 weekly 2 weekly 1 weekly

Summary

This course aims to provide an in-depth understanding of diffusion and mass transfer, that is an essential tool for the chemical engineers.

Content

Course Content

- 1. Fundamentals of diffusion
- 2. Diffusion in dilute solutions
- 3. Diffusion in concentrated solutions
- 4. Diffusion coefficients in gases, liquids and solids
- 5. Diffusion in nanoporous materials
- 6. Multicomponent diffusion
- 7. Dispersion
- 8. Theories in mass transfer
- 9. Diffusion in chemical reactions
- 10. Modeling diffusion in membranes

Keywords

Diffusion, mass transfer coefficient, convection, dispersion, multicomponent diffusion, mass transfer with reaction

Learning Prerequisites

Important concepts to start the course Mass, and energy balance Basics of diffusion and mass transfer

Learning Outcomes

By the end of the course, the student must be able to:

- Carry out calculations to extract concentration profile for a given system
- Carry out calculations to extract mass transfer rate for a given system
- Formalize mathematical models that describe complex mass transport cases.
- Apply various diffusion and mass transfer models to analyze and solve a wide-range of problems dealing with mass

transport.

Teaching methods

Projected slides for students in the classroom Slides will be shared by zoom Recorded lectures would also be available Lecture notes will be available on course moodle page

Expected student activities

Active participation in every class (taking down lecture notes, solving exercise, in-class discussion, quizzes)

Assessment methods

Weekly homework (50%) Final exam (50%)

Supervision

Office hours	Yes
Assistants	Yes
Forum	Yes

Resources

Virtual desktop infrastructure (VDI) No

Bibliography Diffusion: mass transfer in fluid systems by Cussler

Ressources en bibliothèque

• Diffusion: mass transfer in fluid systems / Cussler

Moodle Link

• https://moodle.epfl.ch/course/reset.php?id=9401

EPFL