

PHYS-313 Physique quantique I

Carleo Giuseppe

Cursus	Sem.	Type
Physique	BA5	Obl.

Langue français d'enseignement Crédits Session Hiver Automne Semestre Examen **Ecrit** 150h Charge Semaines 14 5 hebdo Heures Cours 3 hebdo 2 hebdo Exercices Nombre de places

Résumé

L'objectif de ce cours est de familiariser l'étudiant avec les concepts, les méthodes et les conséquences de la physique quantique.

Contenu

- 1. Éléments historiques : la crise de la physique classique
- 2. L'expérience de Stern et Garlach : états quantiques et le spin 1/2
- 3. Les axiomes de la physique quantique : vecteurs d'état, opérateurs, mesure, représentations
- 4. Degrés de liberté continus : operateur de translation et la quantification canonique
- 5. Évolution temporelle : l'équation de Schrödinger et le point de vue de Heisenberg
- 6. Quelques problèmes simples en dimension 1
- 7. Systèmes composés : entanglement et les inégalités de Bell
- 8. Potentiel central, moment cinétique et atome d'hydrogène
- 9. Addition de moments cinétiques

Mots-clés

Mécanique quantique, équation de Schrödinger, principe d'incertitude de Heisenberg, fonction d'onde, oscillateur harmonique, atome d'hydrogène, spin

Compétences requises

Cours prérequis indicatifs

Cours de base de physique et mathématique du 1er cycle

Le cours SHS "Philosophie, épistémologie et histoire des sciences : La philosophie de la nature : physique et philosophie au XXe siècle" (HUM-315) donné par le Prof. M.-A. Esfeld, pourrait constituer un intéressant complément pour approfondir certains aspects interprétatifs de la physique quantique.

Concepts importants à maîtriser

Connaissance solide et pratique de l'analyse et de l'algèbre linéaire (traitées dans les cours de base de mathématique).

Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

- Expliquer la différence paradigmatique entre physique quantique et classique
- Comparer les points de vue de Schrödinger et Heisenberg sur la physique quantique

Physique quantique I Page 1 / 2

- Dériver le principe d'incertitude de Heisenberg
- Résoudre le problème de l'oscillateur harmonique à l'aide de l'équation de Schrödinger ou de l'approche algébrique
- Contextualiser les postulats de la physique quantique
- Interpréter le processus de la mesure en physique quantique
- Résoudre l'équation de Schrödinger pour des problèmes à une, deux et trois dimensions
- Calculer le spectre d'énergie de l'atome de hydrogène

Compétences transversales

- Utiliser une méthodologie de travail appropriée, organiser un/son travail.
- Fixer des objectifs et concevoir un plan d'action pour les atteindre.

Méthode d'enseignement

Ex cathedra. Exercices préparés en classe.

Travail attendu

Participation au cours. Résolution des séries d'exercices durant les heures d'exercices. Réviser régulièrement les notes de cours à la maison.

Méthode d'évaluation

examen écrit

Encadrement

Office hours Non
Assistants Oui
Forum électronique Oui

Ressources

Bibliographie

- 1. "Modern Quantum Mechanics" (2nd edition), J.J. Sakurai, J. Napolitano (Cambridge University Press, 2017)
- 2. "Quantum Mechanics, a modern development", (2nd edition) L. Ballentine, (World Scientific, 2014)
- 3. "Mécanique Quantique I-II", Cohen-Tannoudji, Diu, Lahoë (Hermann);

Ressources en bibliothèque

- Modern Quantum Mechanics / Sakurai
- Quantum Mechanics / Landau
- Mécanique Quantique / Cohen-Tannoudji

Polycopiés

Tout le matériel disponible est publié sur le moodle du cours.

Liens Moodle

• http://moodle.epfl.ch/course/view.php?id=11431

Physique quantique I Page 2 / 2