# CIVIL-226 Introduction to machine learning for engineers

| Alahi Alexan      | dre  |      |                     |                  |
|-------------------|------|------|---------------------|------------------|
| Cursus            | Sem. | Туре | Language of         | English          |
| Civil Engineering | BA4  | Obl. | teaching            | Linglish         |
| HES - GC          | E    | Obl. | Credits             | 5                |
|                   |      |      | Session<br>Semester | Summer<br>Spring |
|                   |      |      | Exam                | During the       |

# Summary

Machine learning is one of the fundamental building blocks of the Computational Thinking education at EPFL.

#### Content

This class will focus on the basics of Machine Learning. Students will code in Python.

#### CONTENT

The class will cover the following concepts:

#### - Machine learning basics

- Supervised vs Unsupervised
- Regression vs. Classification
- Underfitting vs Overfitting
- Bias vs. Variance
- Parametric vs Non-parametric approaches
- · Discriminative vs Generative models
- Shallow vs Deep learning

#### - Shallow supervised learning

- Linear Regression
- Logistic Regression
- Naive Bayes
- Gaussian naive
- Trees
- Random forest
- Ensemble/bagging/boosting
- Support Vector Machine

### - Deep learning

- Neural networks overview
- Type Layers
- Activation functions
- Backpropagation

### - Unsupervised learning / dimensionality reduction

semester 150h

5 weekly 2 weekly

3 weekly

14

Workload Weeks

> Courses Exercises

Number of positions

Hours

- SVD
- PCA
- Embeddings
- Autoencoders

### - Unsupervised learning / clustering

- K-means
- Gaussian mixture
- DBSCAN

### - Role of input

- Feature engineering
- Role of representation
- Handling different types of features
- Missing values
- Feature expansion

### - Role of supervision

- Loss functions
- Multitask learning

### - Role of optimization

Stochastic/Gradient descent

### - Recipe/tips for training

- Weight initialization
- Data augmentation
- Regularization techniques
- Transfer learning

### - ML ethics

# Keywords Machine learning, Computational Thinking, Artificial intelligence

### **Learning Prerequisites**

Required courses CS-119(h) Linear algebra Basic programming skills (labs will use Python).

## Learning Outcomes

By the end of the course, the student must be able to:

- Define the following basic machine learning problems: regression, classification, clustering, dimensionality reduction
- Explain the main differences between them
- Implement algorithms for these machine learning models

Page 2 / 3



- Optimize the main trade-offs such as overfitting, and computational cost vs accuracy
- Implement machine learning methods for real-world problems, and rigorously evaluate their performance using cross-validation. Experience common pitfalls and how to overcome them.
- Finally, civil students will know the basics of Machine learning, and how they can use it in their fields of interest.

### **Teaching methods**

Lectures and lab exercices.

#### Assessment methods

Lab homeworks: 20% Midterm: 20% Final project: 30% Final exam: 30%

### Supervision

| Office hours | Yes |
|--------------|-----|
| Assistants   | Yes |
| Forum        | Yes |