CH-312	Dynamics of biomolecular processes			
	Fierz Beat			
Cureus	Sem Type			

Cursus	Sem.	гуре	Language of	English
Chemistry	BA6	Obl.	teaching	English
HES - CGC	E	Opt.	Credits Session	2 Summer
			Semester Exam Workload Weeks Hours Courses Number of positions	Spring Written 60h 14 2 weekly 2 weekly

Summary

In this course we will discuss advanced biophysical topics, building on the framework established in the course "Macromolecular structure and interactions". The course is held in English.

Content

• Membranes

- fusion, fission, membrane deformation
- diffusion

• Channels and receptors

- ion channels, receptors
- detection of physical and chemical stimuli

• Protein folding / substates / dynamics

- molecular chaperones and protein folding in the cell
- conformational fluctuations in protein function and regulation
- natively disordered proteins

• Protein machines

- motor proteins in trafficking
- motor proteins in DNA and chromatin transactions

DNA binding proteins / transcription

- protein DNA interactions
- search processes in the nucleus
- dynamics and function of the transcription machinery

Keywords

protein folding, dynamics, molecular machines, DNA, transcription, receptors, membrane, diffusion, trafficking

Learning Prerequisites

Required courses Macromolecular structure and interactions Chemical Biology Chemical thermodynamics

Recommended courses Chemical Biology

Important concepts to start the course Protein structure, folding, function and dynamics Theoretical biophysics, thermodynamics, chemical kinetics Membranes and lipids

Teaching methods

Ex cathedra and discussions.

Expected student activities

Literature study Active participation to discussions

Assessment methods

Written exam

Supervision

Others Moodle

Resources

Bibliography Literature articles / reviews "Principles of Physical Biochemistry", Van Holde, Prentice Hall "Physical Biology of the Cell", Phillips, Kondev, Theriot, Garcia, Garland Science

Ressources en bibliothèque

- Principles of physical biochemistry / Van Holde
- •
- ,
- Physical biology of the cell / Phillips

Prerequisite for

CH-413 Nanobiotechnology and Biophysics CH-419 Cellular Signalling