CIVIL-428	Engineering geology for geo-energy				
	Nussbaum Christophe				
Cursus		Sem.	Туре	Language of	English
Civil Engineering		MA2, MA4	Opt.	teaching	English
Energy minor		E	Opt.	Credits Session	3 Summer
				Semester Exam Workload Weeks Hours Courses Exercises Number of positions	Spring During the semester 90h 14 3 weekly 2 weekly 1 weekly

Summary

Objective is to provide an understanding of the problems in geo-energy projects. Underground as storage medium for carbon dioxide and radioactive waste and as energy source like deep geothermal systems.

Content

Keywords

structural geology, tectonics, natural and induced seiscimicity, stress measurements, borehole stability, hydraulic fracturing, deep geological disposal for radioactive wastes, deep geothermal systems, CO2 sequestration

Learning Prerequisites

Required courses Soil mechanics, Geomechanics, Rock mechanics

Learning Outcomes

By the end of the course, the student must be able to:

- Construct a coherent geological model with the available data.
- Anticipate the rock mass and hydraulic perturbations for any subsurface projects (i.e. deep geothermal, CO2 storage, construction of deep geological disposal for radioactive waste).
- Design the rock mass and hydraulic perturbations for any subsurface projects (i.e. deep geothermal, CO2 sequestration, construction of deep geological disposal for radioactive waste).
- Use correctly the acquired data in the project for building a coherent interpretation.

Transversal skills

- Access and evaluate appropriate sources of information.
- Continue to work through difficulties or initial failure to find optimal solutions.
- Demonstrate the capacity for critical thinking

Expected student activities

attendance at lectures, completing exercices, reading selected scientific publications and doing a personal work

Assessment methods

During the semester, written control and personal work.

Resources

- Ressources en bibliothèque
- Elements of crustal geomechanics / Cornet F.H.

Notes/Handbook

• Elements of crustal geomechanics / Cornet F.H.

Prerequisite for

"Le contenu de cette fiche de cours est susceptible d'être modifié en raison du covid-19"