MATH-311 Rings and modules

CursusSem.TypeMathematicsBA5Opt.Language of teachingEnglishCredits5SessionWinterSemesterFallExamWrittenWorkload150hWeeks14Hours4 weeklyCourses2 weeklyExercises2 weeklyExercises2 weekly		Patakfalvi Zsolt				
Mathematics BA5 Opt. Language of teaching Linguage of teaching Credits 5 Session Winter Semester Fall Exam Written Workload 150h Weeks 14 Hours 4 weekly Courses 2 weekly Exercises 2 weekly	Cursus		Sem.	Туре	Language of	English
Number of positions	Mathematics		BA5	Opt.	teaching Credits Session Semester Exam Workload Weeks Hours Courses Exercises Number of positions	5 Winter Fall Written 150h 14 4 weekly 2 weekly 2 weekly

Summary

The students are going to solidify their knowledge of ring and module theory with a major emphasis on commutative algebra and a minor emphasis on homological algebra.

Content

-basic definitions of module theory -the fundamental theorem of finitely generated modules over a principal ideal domain -Jordan normal form -homological algebra -Hilbert's nullstellensatz -Krull dimension -transcendence degree -localization -tensor product -integral extensions -Noether normalization -going up theorem -going down theorem -primary decomposition

Learning Prerequisites

Required courses

- Linear algebra
- Théorie des groupes
- Anneaux et corps

Learning Outcomes

By the end of the course, the student must be able to:

- Manipulate modules over rings.
- Distinguish between properties of modules and rings
- Characterize finitely generated modules over a PID.
- Analyze rings and modules

• Apply the main theorems of the class

Teaching methods

ex chatedra course with exercise session

Assessment methods

1.) Written final exam.

2.) Bonus exercises to be handed in during the semsester, worth up to 30% of the final grade.

Resources

Notes/Handbook

There will be pdf notes provided for the course.