MATH-327Topics in complex analysis

Rut Matthi	as			
Cursus	Sem.	Туре	Language of	English
Cursus Mathematics	Sem. BA5	Type Opt.	Language of teaching Credits Session Semester Exam Workload Weeks Hours	English 5 Winter Fall Written 150h 14 4 weekly
			Courses Exercises Number of positions	2 weekly 2 weekly

Summary

The goal of this course is to treat selected topics in complex analysis. We will mostly focus on holomorphic functions in one variable. If time permits we will also introduce holomorphic functions in several variables.

Content

- Sequences of holomorphic functions
- Functions with prescribed principal part
- Infinite products
- Holomorphic functions with prescribed zeros
- The Riemann mapping theorem
- Picard's great theorem
- The Riemann sphere
- An introduction to holomorphic functions in several variables

Keywords

Complex analysis, Mittag-Leffler theorem, Weierstrass product theorem, Riemann mapping theorem, Picard's great theorem, several complex variables

Learning Prerequisites

Required courses Analysis I-III (especially basic theory of holomorphic functions)

Important concepts to start the course

Basic theory of holomorphic functions in one complex variable

Learning Outcomes

By the end of the course, the student must be able to:

- Understand the concepts and methods taught in the course and during the exercise classes
- Apply those concepts and methods to analyze and solve problems in complex analysis

Teaching methods

Lectures (on blackboard) and exercise sessions with assistant

Expected student activities

Attending the lectures, solving the exercises

Assessment methods

Written exam

Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.

Supervision

Office hours	No
Assistants	Yes
Forum	Yes

Resources

Bibliography

R. Remmert: Classical topics in complex function theory. Springer, New York, 1998

C. Laurent-Thiébaut: Holomorphic function theory in several variables: an introduction, Springer, London, 2011

Ressources en bibliothèque

- Classical topics in complex function theory
- Holomorphic function theory in several variables

Notes/Handbook

There will be lecture notes available in moodle.