

MICRO-332(b) Manufacturing DLLs (printemps)

Bellouard Yves, Brugger Jürgen, Gijs Martinus, Sayah Abdeljalil, Subramanian Vivek

Cursus	Sem.	Type
Microtechnics	BA6	Obl.

Language of English teaching Credits 2.5 Unauthorized Withdrawal Summer Session Semester Spring During the Exam semester Workload 90h Weeks 14 Hours 5 weekly 5 weekly TP Number of positions It is not allowed to withdraw

from this subject after the registration deadline.

Summary

The goal of this DLL is to introduce students to both the practical aspects of micro-fabrication of a fully functional device.

Content

This course is reserved for students registered in the bachelor of micro-engineering!

This DLL includes two parts. One related to clean-room fabrication process ('Micro332(a)') and a second one ('Micro332(b)'), that addresses system integration and packaging.

The overall goal is to go through a small process chain of a wearable, to fabricate it, to integrate it and finally, to test it.

Keywords

photoresist, photolithography, wet etching, sheet resistance, under-etching, mask alignment, sensor packaging, microassembly, system level integration and testing.

Learning Outcomes

By the end of the course, the student must be able to:

- · Conduct experiments on photolitography and etching
- Interpret experimental results
- Apply the guidelines related to the work in a cleanroom environment
- · Conduct assembly experiments
- Interpret obtained measurement data

Transversal skills

- Write a scientific or technical report.
- Evaluate one's own performance in the team, receive and respond appropriately to feedback.
- Keep appropriate documentation for group meetings.

Teaching methods

• Combination of lectures, prerecorded videos, demonstration and lab sessions.

Expected student activities

Micro 332(a): (Fall)

- 1. Introduction to the clean room (1 session): Clean room environment, security aspects, process flow chart.
- 2. Basic micro-electronic and microsystem procedures (2 sessions)
- 3. Photolithography step with alignment, and wet or dry etching step. (in Lausanne campus)
- 4. Electrical characterization
- 5. Report and summary preparation for knowledge transfer to the 2nd part of the course

Micro 332(b): (Spring)

- 1. Design of a 3D package for a wearable sensor
- 2. Assembly of the sensor electronics on the board (in Neuchâtel campus)
- 3. Overall integration and functionality testing
- 4. Modelling
- 5. Report preparation

Assessment methods

Final grade is the ECTS weighted average (2 and 3) of both grades for Micro 332(a) and the Micro 332(b), respectively. Assessment method is based on the reports.

Supervision

Office hours No
Assistants Yes
Forum Yes
Others Moodle