# PHYS-462 Quantum transport in mesoscopic systems

|           | Banerjee Mitali |          |      |                                                                                        |                                                                          |
|-----------|-----------------|----------|------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Cursus    |                 | Sem.     | Туре | Language of                                                                            | English                                                                  |
| Ingphys   |                 | MA1, MA3 | Opt. | teaching                                                                               | English                                                                  |
| Physicien |                 | MA1, MA3 | Opt. | Credits<br>Session<br>Semester<br>Exam<br>Workload<br>Weeks<br><b>Hours</b><br>Courses | 4<br>Winter<br>Fall<br>Oral<br>120h<br>14<br><b>4 weekly</b><br>2 weekly |
|           |                 |          |      | Exercises<br>Number of<br>positions                                                    | 2 weekly                                                                 |

## Summary

This course will focus on the electron transport in semiconductors, with emphasis on the mesoscopic systems. The aim is to understand the transport of electrons in low dimensional systems, where even particles with statistics different than fermions and bosons will be discussed.

## Content

- 1. Preliminary concepts in Condensed matter physics
- 2. Landauer-Buttiker formalism in one dimensional channel
- 3. Transmission function, S-matrix and Green's functions
- 4. IQHE, Basics, Classical Hall effect
- 5. FQHE, Review of IQHE
- 6. Berry Phase
- 7. Recent/Relevant experimental works

#### Learning Prerequisites

Required courses Introduction to Solid state physics

Important concepts to start the course Electronic transport, superconductivity

#### Learning Outcomes

By the end of the course, the student must be able to:

• Develop basic understanding of quantum phenomenon in the mesoscopic devices and current state of the art experimental works in related fields

### Assessment methods

oral exam during the exam session

Resources

Bibliography Electronic transport in mesoscopic system by Supriyo Datta



• Electronic transport in mesoscopic system by Supriyo Datta

Notes/Handbook Lecture notes