

# **Fluid mechanics (for SIE)**

| Porté-Agel F | ernando |
|--------------|---------|
|--------------|---------|

| Cursus                                 | Sem. | Type |
|----------------------------------------|------|------|
| Environmental Sciences and Engineering | BA4  | Obl. |
| HES - SIE                              | Е    | Obl. |

| Language of teaching | English  |
|----------------------|----------|
| Credits              | 5        |
| Session              | Summer   |
| Semester             | Spring   |
| Exam                 | Written  |
| Workload             | 150h     |
| Weeks                | 14       |
| Hours                | 6 weekly |
| Courses              | 3 weekly |
| Exercises            | 2 weekly |
| Project              | 1 weekly |
| Number of            |          |
| positions            |          |
|                      |          |

#### **Summary**

This course helps students acquire basic knowledge of the main concepts and equations of fluid mechanics and develop the skills necessary to work effectively in professional engineering practice.

#### Content

- · Introduction: Continuum assumption, basic fluid properties
- · Fluid statics: pressure, forces on immersed body
- · Flowing fluids and pressure variation: continuity, momentum, energy equations, applications in engineering
- · Dimensional analysis and similitude
- Surface resistance
- · Flow in conduits
- Flow in open channels
- Flow measurement

# **Learning Prerequisites**

### **Recommended courses**

Physics, Mathematics, Mechanics

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Describe basic fluid and flow characteristics such as density, viscosity, surface tension, shear stress, pressure and velocity.
- Apply the hydrostatic equation and the buoyancy equation to predict forces and moments.
- Apply the Bernouilli equation to calculate pressure and velocity variations in a fluid flow.
- Apply the contintuity equation to draining tanks and reservoirs.
- Apply the momentum equation to stationary and moving control volumes.
- Apply the energy equation to predict variables such as pressure drop and head loss.
- Apply the Buckingham-Pi theorem to determine dimensionless variables.



- Design pipes and pumps based on pressure drop and head loss calculations.
- Apply Manning's equation to uniform open channel flow and find the best hydraulic section.

# **Teaching methods**

Ex cathedra, exercises, practical work

#### **Expected student activities**

Attending lectures and exercises and participation in laboratories (practical work).

#### Assessment methods

Exercises (10%)

Laboratories and practical work (5%)

Two written midterm tests (50%)

Written final exam (120 min) during exam session (35%)

## Supervision

Office hours Yes
Assistants Yes
Forum No

## Resources

# **Bibliography**

D. F. Elger et al., "Engineering Fluid mechanics", 10th ed. (Librairie la Fontaine) Course materials in internet

## Ressources en bibliothèque

• Engineering Fluid mechanics / Eiger