ENV-523 Hydrogeophysics

Holliger Klaus				
Cursus	Sem.	Туре	Language of	English
Environmental Sciences and Engineering	MA2, MA4		Language of teaching Credits Session Semester Exam Workload	English 3 Summer Spring During the semester 90h
			Workload Weeks Hours Courses Exercises Number of positions	14 3 weekly 2 weekly 1 weekly

Summary

This course aims at providing a solid methodological foundation for understanding the principles and the applicability of geophysical techniques relevant for addressing hydrogeological and related environmental problems. The goal is to provide students with pertinent decision making capabilities.

Content

Surface- and borehole-based geophysical techniques suitable for the characterization of the vadose and saturated zones

Keywords

applied geophysics, hydrogeophysics, soil and rock physics, aquifer, vadose zone

Learning Prerequisites

Important concepts to start the course Basic knowledge and interest in subsurface hydrology and soil physics

Learning Outcomes

By the end of the course, the student must be able to:

- Assess / Evaluate
- Decide
- Analyze

Transversal skills

- Communicate effectively with professionals from other disciplines.
- Give feedback (critique) in an appropriate fashion.
- Use a work methodology appropriate to the task.

Teaching methods Lectures, exercises, self-learning

Expected student activities

exercises, literature study

Assessment methods

100 % continuous control:50 % exercises during the semester50 % written final exam at the end of the semester

Supervision

Office hoursYesAssistantsNoForumNoOthersCommunication via moodle and informal meetings upon agreement.

Resources

Bibliography Recommended: Rubin, Y., and Hubbard, S., (eds.), 2005, Hydrogeophysics,Springer. Complementary: Kirsch, R., (ed.) 2006, Groundwater Geophysics, Springer.

Ressources en bibliothèque

- Hydrogeophysics / Rubin
- An Introduction to Geophysical Exploration / Kearey
- Groundwater Geophysics / Kirsch

Moodle Link

• https://moodle.unil.ch/course/view.php?id=15231