

CIVIL-459 Deep learning for autonomous vehicles

Alahi Alexandre

Cursus	Sem.	Type
Civil Engineering	MA2, MA4	Opt.
Robotics, Control and Intelligent Systems		Opt.
Robotics	MA2, MA4	Opt.

Language of teaching	English
Credits	6
Session	Summer
Semester	Spring
Exam	During the
	semester
Workload	180h
Weeks	14
Hours	6 weekly
Courses	2 weekly
Exercises	4 weekly
Number of	
positions	

Summary

Self-driving cars, delivery robots, or self-moving segways. Most of these Al-driven transportation systems rely on four pillars: 1-Sensing, 2-Perceiving, 3-Predicting, and 4-Acting steps. Students will learn the fundamentals behind these four pillars, i.e., the technology behind autonomous vehicles.

Content

Introduction to Al-driven systems

- 2. Sensing modalities
- 3. Perceiving: how to extract meaningful information from raw data?
 - Intro to machine learning (fundamentals to regression and classification)
 - Intro to deep learning (Neural Network, CNN, regularization techniques)
 - State-of-the-art techniques for localisation, detection, and tracking objects in the context of autonomous

vehicles.

- 4- Predictive models
 - Intro to Recurrent Neural Networks
 - Learning to clone socially-accepted human behavior
- 5- Acting: challenges and ethical impacts

Students will implement perception tasks for autonomous vehicles and participate to a human-robot tandem race.

Keywords

Deep Learning, Autonomous Vehicle, Artificial intelligence, Machine learning, Self-driving car

Learning Prerequisites

Required courses

Fundamentals in Analysis, Linear algebra, Probability and Statistics.

Programming skills.

Learning Outcomes

By the end of the course, the student must be able to:

- Define the fundamental steps behind an Al-driven system
- Design the building steps of an autonomous vehicle
- Implement an algorithm for each step
- Explain and understand the challenges and ethical impacts

Teaching methods

Ex cathedra

Assessment methods

Lab projects (in group): 30%

Midterm: 30%

Final project (in group): 40%

Prerequisite for

"Le contenu de cette fiche de cours est susceptible d'être modifié en raison du covid-19"