MSE-425	Soft matter				
	Amstad Esther, Klok	Harm-Anton			
Cursus		Sem.	Туре	Language of	English
Materials Scien	ce and Engineering	MA2, MA4	Opt.	teaching	C C
				Credits	4
				Session	Summer
				Semester	Spring
				Exam	Written
				Workload	120h
				Weeks	14
				Hours	4 weekly
				Courses	3 weekly
				Exercises	1 weekly
				Number of positions	

Remark

In 2022-2023, this course will be given in Autumn 2022

Summary

The first part of the course is devoted to the self-assembly of molecules. In the second part we discuss basic physical chemical principles of polymers in solutions, at interfaces, and in bulk. Finally, we look at colloids and emulsions.

Content

- Self-assembly in liquids
 - Thermotropic liquid crystals
 - Lyotropic liquid crystals
 - Micelles
 - Vesicles

• Polymers

- In solution
- At solid-liquid interfaces
- In bulk

Colloids

- Stabilization of nanoparticles
- Formation and stabilization of emulsions

Keywords

soft materials, self-assembly, organic molecules, polymers, colloids

Recommended courses Physical chemistry of polymeric materials

Learning Outcomes

By the end of the course, the student must be able to:

- Design molecules that assemble into a desired superstructure
- Predict the influence of changes in the structure of molecules on their self-assembly behavior
- Estimate the influence of the structure of soft materials on their properties
- · Modify surfaces to impart a desired functionality to them
- Design colloids with a tunable interparticle interaction
- Design microscopic materials made from colloidal buildling blocks
- Design stable emulsions and dispersions

Teaching methods

Exercises will be incorporated into the lectures

Expected student activities

Solving Exercises on a weekly basis Presentation of a challange: This includes an oral presentation and a written report

Assessment methods

One student project presented within the last two weeks of the semester and one written examination. The student project counts for 25% the examination for 75% of the final grade.

Supervision

Office hours	No
Assistants	Yes
Forum	No

Resources

Bibliography

Soft Condensed matter, Richard A. L. Jones, Oxford Master Series in Condensed Matter Physics

Ressources en bibliothèque

- Soft Condensed Matter / Jones
- Polymer Chemistry / Lodge