

Michler Johann				
Cursus	Sem.	Туре	l anguage of	English
Materials Science and Engineering	MA2, MA4		Language of teaching Credits Session Semester Exam Workload Weeks Hours Courses Number of positions	English 2 Summer Spring Oral 60h 14 2 weekly 2 weekly

Summary

The students will learn about the essential chemical, thermodynamic and physical mechanisms governing thin film growth, about the most important process techniques and their typical features, including process-microstructure-relationships.

Content

- Introduction (applications, importance, history, overview, vacuum science and technology)
- Major deposition methods with examples and typical applications: evaporation; plasmas, ion beam processing, sputtering; chemical vapor deposition; atomic layer deposition
- Nucleation and growth models, epitaxy
- Film morphology and microstructure
- Interdiffusion, reactions and transformations
- Characterisation techniques of thin films and surfaces
- Mechanical properties of thin films

Examples throughout the chapters mostly from Swiss companies on hard coatings, microelectronics, architectural glass, decorative coatings

Keywords

Plasma and thermal activation Thin film growth models Non-equilibrium and equilibrium processes Ion bombardment & sputtering Film morphology and micrstructure Thin film characterisation methods Mechanical properties Industrial application of thin films

Learning Prerequisites

Important concepts to start the course Basic courses on thermodynamics, physics, and chemistry

Learning Outcomes

By the end of the course, the student must be able to:

- Describe thin film growth methods
- Explain main mechanisms
- Propose methods according to requirements
- Theorize on the effect of process parameters
- Describe thin film characterisation methods
- Propose thin film characterisation methods according to damage cases or quality control requirement

Transversal skills

- Assess one's own level of skill acquisition, and plan their on-going learning goals.
- Access and evaluate appropriate sources of information.

Teaching methods

ex cathedra exercices demonstrations

Assessment methods

oral exam

Supervision

Assistants Yes

Resources

Bibliography Copies of slides will be distributed via moodle Recommended books

Moodle Link

• http://moodle.epfl.ch