CH-420 Understanding advanced molecular simulation

Smit Berend				
Cursus	Sem.	Туре	Language of	English
Chimiste	MA2, MA4	Opt.	teaching	Linglish
Computational science and Engineering	MA2, MA4	Opt.	Credits Session	4 Summer
			Semester	Spring
			Exam	During the semester
			Workload	120h
			Weeks	14
			Hours	3 weekly
			Courses	2 weekly
			Project	1 weekly
			Number of positions	

Summary

This course introduces advanced molecular simulation techniques such as Monte Carlo and Molecular dynamics in different ensembles, free energy calculations, rare events, Configurational-bias Monte Carlo etc.

Content

The course will be given in five blocks, each covers a topic and ends with an assignment to carry out some simulations.

- 1. [Weeks 1-3] Computational Carpentry and Statistical Thermodynamics
- 2. [Weeks 4-5] Basic Monte Carlo and Molecular Dynamics
- 3. [Weeks 6-9] Monte Carlo and Molecular dynamics in different ensembles
- 4. [Week 7] semester break
- 5. [Weeks 10-13] Free energy calculations and rare events
- 6. [Weeks 14-15] Special topics

Keywords

molecular simulation, molecular dynamics, Monte Carlo simulation

Learning Prerequisites

Recommended courses

knowledge on statistical thermodynamics, some basic programming skills

Assessment methods

The mark will be a: assignments given during the course (60%) and reports + oral presentation of 2 blocks (40%)

Resources

Bibliography

D. Frenkel and B. Smit, *Understanding Molecular Simulations: from Algorithms to Applications*, 2nd ed. (Academic Press, San Diego, 2002)

Ressources en bibliothèque

• Understanding molecular simulation : from algorithms to applications / Frenkel

