e.	D	e	
e	Г	c	ь.

positions

MATH-497 Homotopy theory

Scherer J	érôme			
Cursus	Sem.	Туре	Language of	English
Ingmath	MA1, MA3	Opt.	teaching	Linglish
Mathématicien	MA1, MA3	Opt.	Credits Session	5 Winter
			Semester	Fall
			Exam	Written
			Workload	150h
			Weeks	14
			Hours	4 weekly
			Courses	2 weekly
			Exercises	2 weekly
			Number of	

Summary

We propose an introduction to homotopy theory for topological spaces. We define higher homotopy groups and relate them to homology groups. We introduce (co)fibration sequences, loop spaces, and suspensions. We study long exact sequences. We construct Eilenberg-Mac Lane spaces.

Content

- 1. Higher homotopy groups
- 2. Cofibrations and fibrations
- 3. Loop spaces and suspension
- 4. Long exact sequences for homotopy groups
- 5. Eilenberg-Mac Lane spaces
- 6. Hurewicz homomorphism

Keywords

Homotopy groups, Cofibrations and fibrations, Loop spaces and suspension, Long exact sequence, Eilenberg-Mac Lane space, Hurewicz homomorphism

Learning Prerequisites

Required courses Topology, Algebraic Topology, Group Theory, Rings and Fields

Recommended courses

Rings and modules

Important concepts to start the course Fundamental group, Homology groups, cell complexes, excision in homology

Learning Outcomes

By the end of the course, the student must be able to:

- Manipulate fibrations and cofibrations
- Perform elementary computations of homotopy groups
- Compare homotopy with homology groups
- Define the notions introduced in the course

- State the main theorems and prove them
- Apply the tools developed in the course to examples

Teaching methods

ex-cathedra teaching, exercise classes

Expected student activities

Attend the lectures and exercise sessions, solve exercises, hand in homework, prepare a presentation

Assessment methods

The final grade will be assigned based on: 20% - homework in groups 20% - oral presentation during an exercise session 60% - written exam Dans le cas de l'art. 3 al. 5 du Règlement de section, l'##enseignant décide de la forme de l'##examen qu'##il communique aux étudiants concernés.

Supervision

Yes
Yes
Yes

Resources

Bibliography Algebraic Topology, Allen Hatcher Algebraic Topology, Tammo Tom Dieck Algebraic Topology, Edwin Spanier Introduction to Homotopy Theory, Paul Selick

Ressources en bibliothèque

- Algebraic Topology / Hatcher
- Algebraic Topology / Dieck
- Algebraic Topology / Spanier
- Introduction to Homotopy Theory / Selick

Moodle Link

https://moodle.epfl.ch/enrol/index.php?id=16696