

PHYS-468	Physics of life				
	Stahlberg Henning				
Cursus		Sem.	Type	Language of	English
Ingphys		MA2, MA4	Opt.	teaching	Liigiisii
Physicien		MA2, MA4	Opt.	Credits	4
			ор	Session	Summer
				Semester	Spring
				Exam	Written
				Workload	120h
				Weeks	14
				Hours	4 weekly
				Courses	2 weekly
				Exercises	2 weekly
				Number of positions	·

Summary

Life has emerged on our planet from physical principles such as molecular self-organization, thermodynamics, stochastics and iterative refinement. This course will introduce the physical methods to study life and will discuss the quantitative and physical concepts that make life possible.

Learning Prerequisites

Recommended courses

- Biophysics: physics of the cell (P. De Los Rios, S. Manley, BA6)
- Biophysics: physics of biological systems (S. Rahi, MA1)

Important concepts to start the course

• Thermodynamics, Fourier transformation

Learning Outcomes

By the end of the course, the student must be able to:

- Describe the molecules and structural arrangement of modern biological cells
- Describe and quantitatively understand the physical mechanisms that drive living organisms.
- Explain the biophysical tools used to study the molecules of life and interpret their data.

Teaching methods

- 2 hours of class + 2 hour of exercises
- Part of the class will be given via MOOC videos.

Assessment methods

• The course grading is composed of a final written exam counting for 100% of the grade.

Physics of life Page 1 / 2

• Homework will be given every week. Solutions will be handed out. Homework will not be graded. It is strongly advised to make the effort to do the homework weekly.

Resources

Bibliography

• David Sheehan: Physical Biochemistry, Principles and Applications (Wiley, 2013)

Physics of life Page 2 / 2